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Abstract
Flow-based neural vocoders have demonstrated their effective-
ness in generating high-fidelity speech in real-time. However,
most flow-based vocoders are computationally heavy mod-
els which rely on large amounts of speech for model train-
ing. Witnessing the limitations of these vocoders, a new flow-
based vocoder, namely Semi-inverse Dynamic WaveFlow (SiD-
WaveFlow), for low-resource speech synthesis is proposed.
SiD-WaveFlow can generate high-quality speech in real-time
with the constraint of limited training data. Specifically, in
SiD-WaveFlow, a module named Semi-inverse Dynamic Trans-
formation (SiDT) is proposed to improve the synthesis qual-
ity as well as the computational efficiency by replacing the
affine coupling layers (ACL) used in WaveGlow. In addition,
a pre-emphasis operation is introduced to the training process
of SiD-WaveFlow to further improve the quality of the synthe-
sized speech. Experimental results have corroborated that SiD-
WaveFlow can generate speech with better quality compared
with its counterparts. Particularly, the TTS system integrating
SiD-WaveFlow vocoder achieves 3.416 and 2.968 mean MOS
on CSMSC and LJ speech dataset, respectively. Besides, SiD-
WaveFlow converges much faster than WaveGlow at the train-
ing stage. Last but not least, SiD-WaveFlow is a lightweight
model and can generate speech on edge devices with a much
faster inference speed. The source code and demos are avail-
able at https://slptongji.github.io/.
Index Terms: speech synthesis, generative models, low-
resource, neural vocoder

1. Introduction
A vocoder is an essential component in a speech synthetic sys-
tem, which is used to generate speech waveforms from acous-
tic features (such as Mel-spectrograms). Neural vocoders have
proven to outperform traditional source-filter vocoders [1, 2]
for synthesizing high-quality speeches. The first groundbreak-
ing neural vocoder was WaveNet [3], and soon many other ap-
proaches, such as WaveRNN [4], WaveFlow [5] and WaveG-
low [6], etc., were developed. These vocoders based on genera-
tive networks offer state-of-the-art speech synthesis quality.

Existing generative models can be categorized into two
types: the autoregressive ones that generate speech in sequence
and the non-autoregressive ones that generate speech in paral-
lel. Compared with autoregressive models [3, 7], those non-
autoregressive ones, which include flow-based [5,6], Gan-based
[8–10] and diffusion-based [11,12] models, consume much less
inference time. However, due to structural complexity, these
generative models rely on large amounts of data for training
[13]. Therefore, it is a challenging problem to build a high-
quality generative neural vocoder with limited training data.

Flow-based neural vocoders [5, 6] are a kind of non-
autoregressive generative vocoder. They transform a probabil-

∗ Corresponding author.

ity density with a sequence of invertible mappings [14]. The
flow-based models can be futher divided into two categories: 1)
models based on autoregressive transforms (e.g. inverse autore-
gressive flow used in ClariNet [15]), and 2) models based on
bipartite transforms (e.g. Glow [16] used in SqueezeWave [17]
and WaveFlow [5]). Compared with autoregressive transforms,
bipartite transforms have much simpler training pipelines but
are usually more complex in model settings (e.g. deeper layers,
more hidden nodes) [18]. Consequently, bipartite transform-
based models require more data for sufficient model training.
In addition to their model complexity, flow-based vocoders are
computationally intensive, which makes them difficult to be de-
ployed on the devices with limited computing resources, such
as mobile phones, Raspberry Pi, etc.

Witnessing the above shortcomings of the existing flow-
based models, a new flow-based model, namely SiD-WaveFlow,
is proposed in this paper. SiD-WaveFlow can generate high-
quality speech in low-resource conditions. Specifically, SiD-
WaveFlow requires only five minutes of speech for model train-
ing without additional information. Besides, it has much fewer
parameters compared with WaveGlow and its computational
cost has been largely reduced. As a result, the inference speed
of SiD-WaveFlow is much faster than WaveGlow. In addition,
in the training stage, SiD-WaveFlow converges much faster.

Our contributions can be summarized as follows:
• A new flow-based neural vocoder SiD-WaveFlow is pro-

posed for speech synthesis under low-resource condi-
tions. It simply relies on 5-minute speeches for model
training without external knowledge.

• In SiD-WaveFlow, a semi-inverse dynamic transforma-
tion (SiDT) layer is proposed to substitute the traditional
affine coupling layers (ACL) used in bipartite transforms
such as WaveGlow. Compared with ACL, the SiDT layer
is more computationally efficient and converges much
faster.

• A Prenet module which contains a pre-emphasis and
a squeeze operation is added in SiD-WaveFlow, which
helps to improve the quality of synthesized speech.

The experimental results have demonstrated the computa-
tional efficiency and effectiveness of the SiD-WaveFlow in low-
resource speech synthesis.

2. Methodology
2.1. Preliminaries

A normalizing flow transforms a normalized density distribu-
tion to a target normalized density distribution through a se-
quence of invertible bijective transformation functions. There-
fore, flow-based vocoders can generate speech y by applying a
series of invertible deep neural networks gi on the input Mel-
spectrograms x using transformation y = g1 ◦ g2 ◦ · · · gk(x).
Because gi is invertible, based on change of variable rule, the
model can be trained by minimizing the negative log-likelihood
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Figure 1: The multi-scale architecture of SiD-WaveFlow. (a) SiD-WaveFlow transforms speeches to Mel-spectrograms at the training
stage (dotted lines) and generates speeches from Mel-spectrograms (solid lines) at the speech generation stage; (b) The components in
Prenet module; (c) The components in one step of flow; (d) The data flow in SiDT during the model training.

of data as,

log p(y) = log p(x) +
K∑

i=1

log
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i

dg−1
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∣∣∣∣∣ (1)

where K is the number of invertible mappings, det dg−1
i

dg−1
i−1

is the

Jacobian determinant of g−1
i , and g−1

0 (y) equals y. Since gi is
invertible, x can be inferred by x = g−1

K ◦ g−1
K−1 ◦ · · · g−1

1 (y).
WaveGlow [6] adopts the flow structure [16] to implement

the above invertible transforms. It consists of a squeeze opera-
tion, an invertible 1 × 1 convolution module, and an ACL mod-
ule. The invertible 1 × 1 convolution module and the ACL mod-
ule form a flow step which will be repeated during the model
training and the speech generation. These modules work in
sequence to transform Mel-spectrograms to speech waveforms
and vice versa.

2.2. Overview of SiD-WaveFlow

SiD-WaveFlow is a novel flow-based vocoder which is also
based on generative networks. Its architecture has been shown
in Figure 1 (a). Similar to WaveGlow, SiD-WaveFlow consists
of a Prenet module, a flow step repeated K times, and a split
operation. Particularly, K steps of flow and the split operation
consist a T -scale architecture to accelerate the training speed.
In the training stage, the speech samples are firstly fed into the
Prenet module. Then, these preprocessed speech samples are
passed to the flow step which will be repeated for K times. The
flow step consists of two invertible transformations: an invert-
ible 1×1 convolution layer and a newly proposed SiDT layer.
In the end, the output of K steps of flow is split out to compute
the loss.

2.3. Prenet

In Prenet module, two operations are performed on the input
speeches, i.e. pre-emphasis and squeeze, as shown in Figure
1(b). Firstly, the original speeches are pre-emphasized to in-
crease the high-frequency resolution of speeches as,

x′(n) = x(n)− ax(n− 1) (2)

where x(n) and x′(n) represent the n-th sampling point before
and after pre-emphasis respectively and a is the pre-emphasis
coefficient the value of which is between 0.9 and 1. After that,

the squeeze operation which is used in WaveGlow is performed
on the speech to increase the number of channels for further par-
allel computing. Specifically, the pre-emphasized speech sam-
pling vectors are reshaped from N × 1 to N

8
× 8 according

to [19], where N is the number of sampling points in the speech.

2.4. Semi-inverse dynamic transformation

ACL [6] which is composed of a series of invertible neural net-
works is adopted by WaveGlow to implement a normalizing
flow. However, ACL suffers from its limited computational per-
formance. Inspired by the technique of inverse dynamic linear
transformations (IDLT) [20], SiDT is proposed to replace ACL
in the flow step. SiDT inherits the computational efficiency of
ACL and the high performance of IDLT. The data flow in SiDT
is shown in Figure 1(d) and is defined using Eqs. (3)-(8),

(u1,u2) = split(u),v0 = 0 (3)
(s1, t1) = NN(m(v0),h) (4)

v1 = s1 ⊙ u1 + t1 (5)
(s2, t2) = NN(m(v1,u1),h) (6)

v2 = s2 ⊙ u2 + t2 (7)
v = concat(v1,v2) (8)

where u is the input vector, u1 and u2 are two vectors obtained
by equally dividing vector u, v0 is the vector 0, and h is the
upsampled Mel-spectrograms of input speeches, which is used
to adjust the output of SiDT. m can be any transformation such
as addition or multiplication, and NN(·) is a modified gated
convolution layer [21].s1, s2, t1, and t2 are the affine factor
vectors computed by NN(·). Vectors v1 and v2 are computed
from s1, s2, t1, and t2 using Eqs. (5) and (7). The output vector
v is finally obtained by horizontally concatenating v1 and v2.

Since v0 is added intentionally as the extra input, unlike
IDLT, it is initialized to the vector 0 instead of 1 to avoid pos-
sible noise interference. Moreover, the number of intermediate
channels in NN(·) is cut down to alleviate the impact of the
information bottleneck [17]. Specifically, m(x, y) is defined
as m(x, y) = x + y to accelerate calculation and reduce the
number of parameters. The training loss of SiDT can be easily
computed as,

log

∣∣∣∣det
dg−1

SiDT(u)

du

∣∣∣∣ = log |s1|+ log |s2| (9)
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2.5. Invertible 1×1 convolution layer

In flow-based generative networks [6,16,19], an invertible 1×1
convolution is adopted to reorganize the order of the channels.
Therefore, the same invertible 1×1 convolution layer is added
before the SiDT layer to reorganize the order of intermediate
variables in SiD-WaveFlow (see Figure 1(c)). To ensure the in-
vertibility of the network, the weights of the convolution W are
initialized with a random orthogonal matrix. The data transfor-
mation in an invertible 1×1 convolution layer during training
can be defined as g−1

1×1conv = Wz, where z is the vector either
from the output of Prenet module or from the output of SiDT
in the former flow step. The training loss of the invertible 1×1
convolution can be computed as,

log

∣∣∣∣∣det
dg−1

1×1conv(z)

dz

∣∣∣∣∣ = log |detW | (10)

where det
dg−1

1×1conv(z)

dz
is the determinant of the Jacobian of

the invertible 1×1 convolution.

2.6. Multi-scale architecture

The multi-scale architecture can extract information in different
time scales and accelerate the training speed for a flow-based
model [16]. As shown in Figure 1(a), SiD-WaveFlow’s archi-
tecture contains T -scales. Each scale contains K steps of flow in
SiD-WaveFlow. In the training stage, the first two dimensions
of the vector are split out to compute the loss at the end of each
scale. The remaining dimensions are input into the next scale.
After T scales, all dimensions are concatenated together to form
the output of SiD-WaveFlow. The operations in the multi-scale
structure are defined by Eqs. (11)-(13),

h0 = r (11)
(xi,hi) = split(Flow(hi−1)) (12)

x = concat(x1,x2, · · ·xT ) (13)

where r is the output vector of the Prenet module, Flow() rep-
resents the transformation of K steps of flow, split() represents
the split operation which extracts xi from the output of K steps
of flow, hi is the intermediate vector in SiD-WaveFlow, and x
is the output Mel-spectrograms after training. Moreover, h0 is
initialized with r.

3. Experiments
3.1. Experiment setup

To validate the performance of SiD-WaveFlow, extensive ex-
periments are performed on a workstation equipped with a GTX
2080Ti and a Raspberry Pi 4B. Two datasets are used for perfor-
mance evaluation. One is Chinese Standard Mandarin Speech
Corpus (CSMSC) [22]. It contains 10,000 periods of recordings
read by a young woman which last about 12 hours. The other
one is LJ speech dataset [23], which contains 13,100 English
sentence fragments read by a female speaker. The recordings in
LJ speech dataset last about 24 hours.

To simulate a low-resource condition for speech synthesis,
only 5 minutes of speech is used to train the model. Taking the
CSMSC dataset as an example, the training sets are constructed
as follows. At first, half of the dataset, i.e. 5,000 speech sam-
ples, are used for the test. Then, the remaining samples are
randomly divided into 45 non-overlapping training sets. Each
training set contains about 90 samples with a total duration of

about 5 minutes. Because there are 45 non-overlapping train-
ing sets, the evaluation experiment is conducted 45 times. In
each round of evaluation, the model is trained using only one
training set and generates 5,000 speeches based on the Mel-
spectrograms extracted from testing samples. The overall per-
formance of the model is the average quality of all the generated
speeches obtained in 45 rounds of evaluation experiments. Sim-
ilarly, for the LJ speech dataset, 5,000 samples are randomly se-
lected and regarded as the testing samples. 45 non-overlapping
training sets are constructed from the remaining samples and
each training set contains 50 samples with a 5-minutes dura-
tion. Table 1 gives the configurations of the training and testing
sets for the experiments.

Table 1: The configurations of training and testing sets
CSMSC LJ speech dataset

♯ of Testing samples 5,000 5,000
♯ of Training samples 90 50

Training samples duration 5min 5min
Round of evaluation 45 45

In order to compute the training loss, in the training stage of
SiD-WaveFlow, Mel-spectrograms are extracted from the train-
ing samples. The dimension of Mel-spectrograms Dm is set to
80. The value of pre-emphasis coefficient a is set to 0.95. For
the multi-scale architecture, the number of scales T is set to 3.
Four steps of flow are adopted in each scale, i.e. K = 4. The
number of channels in NN(·) is set to 128. Besides, the batch
size is set to 6 according to hardware conditions. The learn-
ing rate lr is initialized to 4e−4. Then an adaptive strategy is
adopted to adjust the learning rate during the back-propagation.

3.2. Evaluation

In addition to SiD-WaveFlow, the model based on Griffin-Lim
algorithm [1] and two flow-based models, which include Wave-
Glow and Wave-IDLT proposed by us, are evaluated for perfor-
mance comparison. Wave-IDLT is a new flow-based model by
simply replacing ACL with IDLT layers [20] in WaveGlow.

Speech quality is often measured by Mean Opinion Score
(MOS). In the previous practice of evaluation, several human
testers were invited to give MOS values for a set of randomly
selected test speeches. However, such tests may lead to an
evaluation bias because the number of speeches which can be
evaluated by people is much smaller than the number of test-
ing samples to be evaluated in our experiments. Instead, in this
work, MOS values are automatically computed using MOSNet
for each generated speech and an average MOS value is sum-
marized over all the generated speeches. MOSNet [24] is an al-
gorithm which can automatically predict the MOS of the speech
and has been widely used for speech quality assessment [25,26].

3.2.1. Qualitative evaluation

Speech quality. In each round of the experiment, a training set
is used to train three models respectively and each model gen-
erates 5,000 speeches based on the Mel-spectrograms extracted
from the testing samples. The performance of four models, i.e.
SiD-WaveFlow, Griffin-Lim, WaveGlow, and Wave-IDLT, are
evaluated by the average MOS value on 5,000×45 generated
speech samples. Specifically, Griffin-Lim serves as the base-
line model for performance evaluation. The average MOS val-
ues corresponding to the four models have been listed in Table
2. In Table 2, SiD-WaveFlow offers the highest speech quality
with average MOS values 3.416 and 2.968 on CSMSC and LJ
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speech dataset, respectively. The average MOS values of Wave-
Glow and Griffin-Lim are worse than SiD-WaveFlow on both
datasets. Wave-IDLT has the worst performance with average
MOS values only 2.785 on both datasets. The results indicate
that SiDT combines the advantages of both ACL and IDLT and
SiD-WaveFlow offers the best synthesis quality compared with
its counterparts.

Table 2: Average MOS of synthesized speeches over 45 rounds
of evaluation

CSMSC LJ speech dataset
Ground Truth 3.754±0.007 3.067±0.002
Griffin-Lim 3.146±0.009 2.882±0.005
WaveGlow 3.324±0.001 2.909±0.001
Wave-IDLT 2.785±0.001 2.785±0.001

SiD-WaveFlow 3.416±0.001 2.968±0.001

Convergence speed. The convergence speeds of three flow-
based methods are compared on a workstation equipped with
a GTX 2080Ti. The results are shown in Figure 2. For a bet-
ter observation, the loss curve is smoothed with a weight of
0.95. Then the smoothed loss is resampled every 100 steps to
estimate the convergence. The model is regarded to be conver-
gent when the difference between adjacent sampling points is
in [0,−0.1]. As shown in Table 3, SiD-WaveFlow behaves sim-
ilarly to Wave-IDLT, each of which requires 3,700 and 3,826
steps to converge respectively. By contrast, WaveGlow con-
verges after 7,778 steps. The fast convergence rate of SiD-
WaveFlow benefits from the computational efficiency of SiDT.

0 2000 4000 6000 8000 10000 12000 14000
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2

1

0
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s

SiD-Waveflow
Waveglow
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Figure 2: Smoothed training loss of three models

Table 3: The number of steps required for convergence
Models Steps

WaveGlow 7,778
Wave-IDLT 3,826

SiD-WaveFlow 3,700

3.2.2. Quantitative evaluation

Inference speed. Three flow-based models are deployed to a
workstation equipped with a GTX 2080Ti and a Raspberry Pi
4B to measure the inference speeds. The results are listed in Ta-
ble 4. SiD-WaveFlow can generate 522k and 5.1k samples per
second on the workstation and Raspberry Pi 4B respectively,
which is much faster than the other two methods. In particular,
Wave-IDLT fails to run on the Raspberry Pi 4B due to limited
computation resources. The performance of SiD-WaveFlow on
the workstation fully meets the requirement of real-time gener-
ation of high-quality speech (48kHz). Its fast inference speed
benefits from its lighter structure which only contains 63.1M
parameters. As a comparison, WaveGlow and Wave-IDLT con-
tains 87.9M and 169.2M parameters, respectively.

Table 4: The number of samples generated per second
Models Workstation Raspberry Pi Parameter#

WaveGlow 405k 4.4k 87.9M
Wave-IDLT 139k failed 169.2M

SiD-WaveFlow 522k 5.1k 63.1M

3.2.3. Ablation study

To demonstrate the necessity of the pre-emphasis operation
adopted by SiD-WaveFlow, the quality of speeches generated
by SiD-WaveFlow with and without pre-emphasis are com-
pared. Respectively, 20 speeches are randomly selected from
the testing set generated by the two models. These speeches
are mixed with the original speeches and each speech is eval-
uated by 10 testers. The average MOS values for two models
are shown in Table 5 with 95% confidence intervals. It can be
seen that the average MOS of the speeches generated by SiD-
WaveFlow is about 3.62 which is much higher than that of the
speeches generated by the model without using pre-emphasis
operation. The results demonstrate that the pre-emphasis oper-
ation can improve the quality of the synthesized speech.

Table 5: The Average MOS of speeches generated by SiD-
WaveFlow and the model without pre-emphasis operation

Model MOS
Ground Truth 3.925 ± 0.008

SiD-WaveFlow without pre-emphasis 3.55±0.02
SiD-WaveFlow (with pre-emphasis) 3.62±0.019

4. Conclusion
The vocoders, which transform acoustic features into speech
waveforms, play an important role in modern TTS systems.
Low-resource conditions in which training data is insufficient
raise a great challenge for the existing neural vocoders. Many
existing solutions resort to pretraining models and then fine-
tuning the models on the specific task using limited training
data. By contrast, in this paper, a new flow-based vocoder,
namely SiD-WaveFlow, is proposed for low-resource speech
synthesis without pretraining techniques.

SiD-WaveFlow is the first flow-based vocoder working un-
der extremely low-resource conditions. It can be well trained
using only 5-minute speeches without external knowledge.
Specifically, in SiD-WaveFlow, a new transformation named
SiDT is proposed to reduce the computational cost raised by
ACL and improve the speech synthesis quality simultaneously.
Besides, a Prenet module is added into the architecture of SiD-
WaveFlow to further improve the speech synthesis quality. The
effectiveness and efficiency of SiD-WaveFlow for speech syn-
thesis in low-resource conditions compared with its competitors
has been corroborated by extensive experiments.
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