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In this paper, Adjusted Rand Index (ARI) is generalized to two new measures based on matrix

comparison: (i) Adjusted Rand Index between a similarity matrix and a cluster partition (ARImp), to

evaluate the consistency of a set of clustering solutions with their corresponding consensus matrix in a

cluster ensemble, and (ii) Adjusted Rand Index between similarity matrices (ARImm), to evaluate the

consistency between two similarity matrices. Desirable properties of ARI are preserved in the two new

measures, and new properties are discussed. These properties include: (i) detection of uncorrelated-

ness; (ii) computation of ARImp/ARImm in a distributed environment; and (iii) characterization of the

degree of uncertainty of a consensus matrix. All of these properties are investigated from both the

perspectives of theoretical analysis and experimental validation. We have also performed a number of

experiments to show the usefulness and effectiveness of the two proposed measures in practical

applications.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is an important approach for organizing vast sets of
data in the real world. However, given that a lot of clustering
algorithms have been proposed, it is still difficult to select a single
one which works well for different data sets. An important technique
known as cluster ensemble [1] provides an alternative framework for
combining multiple clustering solutions into a more accurate solu-
tion. Compared to the individual solutions, cluster ensembles usually
provide improved and more stable results.

A cluster ensemble technique can be characterized by two
main phases: (i) to generate a number of individual clustering
solutions, and (ii) to find a final consensus solution with these
clustering solutions. In the first phase, representative methods to
generate individual clusterings include (i) clustering with differ-
ent point subsets of the original data based on different sampling
techniques [2,3], (ii) clustering with different feature subsets or
feature projection techniques [3–5], (iii) clustering with different
initialization conditions (such as different cluster numbers or
different initialization seeds) [3,6–10], and (iv) clustering with
different algorithms [1,11]. In the second phase, a consensus cluster-
ing solution is derived from the individual clusterings based on
different methods. Representative methods can be roughly categor-
ized into two types: (i) co-association based methods and (ii) graph
mapping based methods. In the first type, a co-association matrix is
ll rights reserved.
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first derived from each clustering solution, whose entries specify
whether a pair of data points belong to the same cluster according to
the current clustering solution. Different consensus functions have
been used for combining the co-association matrices, in which the
consensus matrix is one of the most popular formulations. In
particular, each entry of the consensus matrix is the mean of the
corresponding entries from all the co-association matrices. Such a
consensus matrix can be viewed as a similarity matrix, and thus a
final clustering solution can be obtained with any clustering algo-
rithm that work directly on distance/similarity matrices. Cluster
ensemble methods based on hierarchical agglomerative clustering
algorithms with Single Link (SL), Average Link (AL) or Complete Link
(CL) are popular representatives of this type of methods [7]. On the
other hand, the consensus matrix can also be viewed as a new data
matrix, and the final clustering solution can be obtained with a
conventional clustering algorithm [12], such as the well-known k-
means algorithm [13]. Another popular type of cluster ensemble
methods is to map the individual clusterings to different graphs, and
thus the problem can be solved with many different popular graph
cut algorithms. Among this category, typical solutions include
cluster-based similarity partitioning algorithm (CSPA) [1], Meta-
CLustering Algorithm (MCLA) [1], and the Hybrid Bipartite Graph
Formulation algorithm (HBGF) [4].

Among the cluster ensemble techniques, one of the most
popular approaches to combine multiple clustering solutions is
to construct a consensus matrix. The advantages of this approach
include: (1) the consensus matrix corresponds to a more stable
representation of a partition than an individual clustering solu-
tion. (2) We can assign different importance weightings to
the different clustering solutions based on prior knowledge.
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(3) Different kinds of clustering techniques can be used to create
the ensemble. However, while different measures have been pro-
posed in previous works to characterize the consistency between
different clustering solutions in a cluster ensemble, for example
Adjusted Rand Index (ARI) [14] and Normalized Mutual Informa-
tion (NMI) [1], there does not exist a corresponding measure to
characterize the consistency between a specific clustering solu-
tion and a consensus matrix. In addition, there is a lack of
meaningful measures to characterize the consistency between
pairwise similarity matrices such as co-association matrices or
consensus matrices in cluster ensembles.

It is notable that the requirement to evaluate the consistency
between a clustering solution and a consensus matrix, or between
two similar matrices, is not limited to the case of cluster ensembles.
In real applications, many data sets might be extracted from different
perspectives. In general, a lot of data sets include not only vectors of
attribute values (referred to as features in conventional clustering
approaches) but also pairwise relation information (which is some-
times called similarity). Representative examples could be easily
found, such as pairwise linkage analysis in web data mining [15,16],
structural relation information in social network analysis [17], and
semantic similarity computation in Gene Ontology [18,19]. Recently,
clustering based on both the attribute and relation information
becomes an important topic, and many novel clustering algorithms
have been developed [20,21]. However, to our best knowledge, the
issues of how to effectively evaluate the consistency between a
clustering solution and a relationship graph, and the similarity
between two relationship graphs are still open problems.

In view of the discussion above, we investigate these problems
by proposing new measures along the line of ARI and its fuzzy
extension [22]. We choose ARI because it can be readily computed
based on the pairwise relation matrices, while it is in general
difficult to compute NMI in a similar way. Specifically, we propose
two new measures: (i) Adjusted Rand Index between a similarity
matrix and a cluster partition (ARImp) and (ii) Adjusted Rand
Index between two relation matrices (ARImm) for comparing
these two matrices. We show that ARImp and ARImm are fuzzy
generalization of ARI, and the equivalence between ARI, ARImp
and ARImm are proved from the viewpoint of matrix comparison.
Desirable properties of ARI are preserved in ARImp and ARImm,
and new attractive properties of ARImp and ARImm are discussed
and proved. Note that another advantage of cluster ensemble is to
facilitate the implementation of clustering in a distributed envir-
onment where the raw data cannot be shared among users due
to different restrictions on storage, privacy and ownership [1].
Compared to other measures, another significant attractive prop-
erty of ARImp/ARImm is their ability to enhance the cluster
analysis process in the above context. Specifically, ARImp/ARImm
compare ensembles based on consensus matrices instead of the
individual clustering solutions. We can illustrate the benefit of
this property by the following example: given the availability of a
number of clusterings from different companies based on the
same set of data, a third-party organization (such as a government
department) might need to collect these data to perform statistical
analysis. However, the organization cannot release the individual
clusterings to the companies, since these individual solutions might
contain trade secrets. On the other hand, a consensus ensemble
might be released. In this case, with the availability of only the
ensemble result, each company cannot evaluate its own clustering
based on traditional measures. However, ARImp can effectively deal
with this problem. Similar examples can be found for ARImm. For
example, assume that there are two government departments
collecting different individual clusterings for the same set of data,
and only two consensus results are released. In this case ARImm can
be used to evaluate the similarity based on these two consensus
ensembles alone, rather than relying on the different individual
clusterings which cannot be shared with each other. More applica-
tion examples of ARImp and ARImm are also presented in the
experiment section.

1.1. Contributions of this paper

The main contribution of this paper is the formulation of two
new measures, ARImp and ARImm, which allow the effective
comparison between clustering solutions and consensus matrices,
and that between consensus matrices respectively. We investigate
these two new measures from both the perspectives of theoretical
analysis and experimental validation. In addition, we provide a
number of application examples for ARImp and ARImm, which show
the effectiveness of these two new proposed measures.

1.2. Organization of this paper

The rest of the paper is organized as follows. Section 2 introduces
previous works on cluster ensembles. We also describe two popular
measures for clustering solution evaluation (ARI and NMI), and
some previous measures for the comparison between clustering
solutions and consensus matrices, and those between consensus
matrices. Section 3 describes the two proposed measures ARImp and
ARImm. We show that ARImp and ARImm are fuzzy generalization
of ARI, and the equivalence between ARI, ARImp and ARImm are
proved from the viewpoint of matrix comparison. Desirable proper-
ties of ARImp and ARImm are proposed in Section 4. Experimental
results are discussed in Section 5. Conclusions are presented in
Section 6.
2. Cluster ensembles and related clustering measures

In this section, we provide background information about cluster
ensembles, and describe two popular measures, ARI and NMI, for
clustering solution evaluation. We also describe some previous
measures for the comparison between clustering solutions and
consensus matrices, and those between consensus matrices.

2.1. Cluster ensembles and consensus matrix

Specifically, given a data set X ¼ fxig
N
i ¼ 1 with N points, a cluster-

ing (or partition) P partitions X into a number of mutually disjoint
subsets fPkg

K
k ¼ 1 called clusters. The N�N co-association matrix for

the partition P is defined as follows:

Mij ¼
1 if (k, xiAPk and xjAPk

0 otherwise

�
ð1Þ

Given a number of clustering solutions fPðlÞgLl ¼ 1, the N�N

consensus matrix for these clustering partitions can be constructed
as the average of the individual co-association matrices as follows:

M¼ 1

L

XL

l ¼ 1

MðlÞ ð2Þ

It is interesting to note that a consensus matrix can be viewed as a
fuzzy generalization of a co-association matrix. An illustration of the
consensus ensemble formation process is shown in Fig. 1.

2.2. Clustering measures: Adjusted Rand Index (ARI) and Normalized

Mutual Information (NMI)

In this subsection, we introduce two popular measures for
comparing different clusterings in the cluster ensemble literature:
Adjusted Rand Index (ARI) and Normalized Mutual Information
(NMI).



Table 1
The contingency table.

Cluster Q1 Q2 � � � QKðQÞ
P

P1 N11 N12 � � � N
1K ðQ Þ

N1�

P2 N21 N22 � � � NðQ Þ
2K

N2�

� � � � � � � �

PKðPÞ NKðPÞ1 NKðPÞ2 � � � N
K
ðPÞ

K
ðQ Þ N

K
ðPÞ
�P

N�1 N�2 � � � N
�K
ðQÞ N

Data
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Matrix
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P(l)

M(l)
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1  2  2  1
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0 1 0 0
1 0 0 0
0 0 0 0
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1  1  2  2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

Fig. 1. Illustration of the consensus ensemble formation process. A simple example is shown on the right.
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Let P¼ fP1,P2, . . . ,PK ðPÞ g and Q ¼ fQ1,Q2, . . . ,QKðQ Þ g be two parti-
tions on a data set X with N entities, Nij be the number of entities
in cluster Pi in partition P and in cluster Qj in partition Q, Ni� be the
number of entities in cluster Pi in partition P, N�j be the number of
entities in cluster Qj in partition Q, the degree of similarity between
these two partitions can be characterized using a contingency
matrix as shown in Table 1. The Adjusted Rand Index (ARI) [14] is
defined as follows:

r0 ¼
XKðPÞ
i ¼ 1

XKðQ Þ
j ¼ 1

Nij

2

� �
, r1 ¼

XK ðPÞ
i ¼ 1

Ni�

2

� �

r2 ¼
XKðQ Þ
j ¼ 1

N�j
2

� �
, r3 ¼

2r1r2

NðN�1Þ
ð3Þ

ARIðP,Q Þ ¼
r0�r3

0:5ðr1þr2Þ�r3
ð4Þ

where ðnkÞ is the binomial coefficient.
Normalized Mutual Information (NMI) [1] is another standard

measure for clustering, and it is also extensively used in previous
works. Specifically, NMI measures how similar two clustering solu-
tions is based on a normalized version of the mutual information
measure, and it is defined for two clustering partitions P¼ fP1,P2,
. . . ,PKðPÞ g and Q ¼ fQ1,Q2, . . . ,QKðQ Þ g as follows [1]:

NMIðP,Q Þ ¼
IðP,Q Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðPÞHðQ Þ
p ð5Þ

where I(P,Q) is the mutual information between P and Q, and H(P) is
the entropy of P.

Average Normalized Mutual Information (ANMI) [1,3] is used
to measure the consistency between a set of clustering partitions
fPðlÞgLl ¼ 1 and a clustering partition Q, which is defined as follows:

ANMIðfPðlÞgLl ¼ 1,Q Þ ¼
1

L

XL

l ¼ 1

NMIðPðlÞ,Q Þ ð6Þ

Diversity of a cluster ensemble is generally agreed to be a con-
tributing factor of a cluster ensemble. In general, the Pairwise
Normalized Mutual Information (PNMI) among clustering solutions
is used to measure the diversity of a clustering ensemble [23,3]

PNMIðfPðlÞgLl ¼ 1Þ ¼
X
ia j

NMIðPðiÞ,PðjÞÞ ð7Þ

In other words, a lower PNMIðfPðlÞgLl ¼ 1Þ value corresponds to a
higher diversity.

2.3. General matrix comparison measures

To our best knowledge, there are no proposed measures to
evaluate the similarity between two consensus matrices. As an
alternative, since we consider the comparison of two ensembles
based on their respective consensus matrices, we use some general
matrix comparison measures as references. The most straightfor-
ward measure is the Normalized Similarity using the Frobenius
norm (NSF) of the difference matrix between two matrices

NSFðMðPÞ,MðQ ÞÞ ¼ 1�
1

N2
JMðPÞ�MðQ ÞJF ð8Þ

We choose the kernel alignment similarity measure (KAS) [24]
as the second reference, which is widely used to compare the
similarity between two kernel matrices [24,25]. For two kernel
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matrices MðPÞ and MðQÞ, the kernel alignment similarity measure
(KAS) is defined as follows:

KASðMðPÞ,MðQÞÞ ¼
trðMðPÞMðQ Þ

T
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðMðPÞMðPÞ
T
ÞtrðMðQÞMðQ Þ

T
Þ

q ð9Þ

We choose the scaled Standardized Mantel Statistic (sSMS) as
the third reference. The Standardized Mantel Statistic is widely
used in the Mantel test [26] to measure the correlation between
two matrices [27]. For two square matrices MðPÞ and MðQ Þ (the
number of both rows and columns equals N), the Standardized
Mantel Statistic (SMS) [28] is defined as follows:

SMSðMðPÞ,MðQ ÞÞ ¼

PN�1
i ¼ 1

PN
j ¼ iþ1

MðPÞij �MðPÞij

sðPÞ

0
@

1
A MðQÞij �MðQ Þij

sðQ Þ

0
@

1
A

d�1
ð10Þ

where MðPÞij is the mean of MðPÞij , sðPÞ is the standard deviation of
MðPÞij , and d is the number of entries in the upper triangular portion
of either matrix. Since the range of the SMS coefficient is from �1
to þ1, we use the scaled Standardized Mantel Statistic (sSMS) to
transform it to the range [0, 1] as follows:

sSMSðMðPÞ,MðQ ÞÞ ¼
1þSMSðMðPÞ,MðQ ÞÞ

2
ð11Þ

3. Generalized Adjusted Rand Indices for cluster ensembles

In this section, we propose two new generalized measures:
(i) Adjusted Rand Index between a similarity matrix and a cluster
partition (ARImp), to evaluate the consistency of a set of clustering
solutions with their corresponding consensus matrix in a cluster
ensemble and (ii) Adjusted Rand Index between two consensus
matrix matrices (ARImm), to evaluate the consistency between
two similarity matrices.

3.1. Generalized Adjusted Rand Indices for consensus matrices

Based on ARI, we propose the measure ARImp for an N�N

consensus matrix M and a partition Q ¼ fQ1,Q2, . . . ,QKðQ Þ g (the
number of entities in cluster Qk is denoted by Nk) as follows:

s0 ¼
XKðQ Þ
k ¼ 1

X
i,jAQk ,ia j

Mij

2
, s1 ¼

X
ia j

Mij

2

s2 ¼
XKðQ Þ
k ¼ 1

Nk

2

� �
, s3 ¼

2s1s2

NðN�1Þ
ð12Þ

ARImpðM,Q Þ ¼
s0�s3

0:5ðs1þs2Þ�s3
ð13Þ

We also propose the measure ARImm between two similarity
matrices MðPÞ and MðQÞ as follows:

t0 ¼
X
ia j

MðPÞij M
ðQ Þ
ij

2
, t1 ¼

X
ia j

MðPÞij

2

t2 ¼
X
ia j

MðQ Þij

2
, t3 ¼

2t1t2

NðN�1Þ
ð14Þ

ARImmðMðPÞ,MðQ ÞÞ ¼ t0�t3

0:5ðt1þt2Þ�t3
ð15Þ

3.2. Relationship between ARI, ARImp, and ARImm

We now perform comparison between ARI, ARImp, and ARImm.
First, we can see that they are all expressed in terms of four factors.
To distinguish between the above three measures, we focus on the
difference between these factors, or more specifically, on r0,r1 and
s0,s1 between ARI and ARImp, and on s0,s1 and t0,t1 between ARImp
and ARImm. To understand this difference, we first state two
lemmas about the factors r0 and r1 [14].

Lemma 1. r0 in Eq. (3) corresponds to the total number of pairs of

points which belong to the same cluster in the two partitions.

Lemma 2. r1 in Eq. (3) corresponds to the total number of pairs of

points which belong to the same cluster in partition P.

It is interesting to observe that s0 in Eq. (12) can be regarded as
a fuzzy generalization of r0 in Eq. (3). Note that, for a consensus
matrix, an entry, sayMij, represents the probability of point i and
point j being in the same cluster. Therefore, s0 represents the
summation of the probabilities of those pairs of points within
the same cluster. Similarly, s1 in Eq. (12) can also be regarded as a
fuzzy generalization of r1 in Eq. (3). In addition, t0 and t1 in
Eq. (14) can be naturally viewed as a generalization of s0 and s1 in
Eq. (12). For a certain data set, given two partitions P and Q and
their co-association matrices MðPÞ and MðQ Þ, we would also like to
point out the equivalence between these generalized ARI measures
and the classic ARI measure.

Proposition1. ARIðP,QÞ ¼ ARImpðMðPÞ,Q Þ ¼ ARImpðP,MðQ ÞÞ ¼ ARImm

ðMðPÞ,MðQ ÞÞ.

Proof. Without loss of generality, we only prove (i) ARIðP,Q Þ ¼
ARImpðMðPÞ,Q Þ and (ii) ARImpðP,MðQ ÞÞ ¼ ARImmðMðPÞ,MðQ ÞÞ.

(i) Proof of ARIðP,Q Þ ¼ ARImpðMðPÞ,Q Þ:

We first focus on a cluster Qk in the partition Q. The number of

pairs of points from Qk which also belong to the same cluster in

partition P is
PKðPÞ

i ¼ 1
Nik
2

� �
. In the case of ARImpðMðPÞ,Q Þ, there are

only binary entries in the co-association matrix MðPÞ, where for

two points xi and xj, the entry MðPÞij ¼ 1 indicates that they belong

to the same cluster in partition P. Thus,
P

i,jAQk ,ia jðM
ðPÞ
ij =2Þ is also

equal to the number of pairs of points from Qk belonging to the

same cluster in partition P. Therefore, we obtain
PKðPÞ

i ¼ 1ð
Nik
2 Þ ¼P

i,jAQk ,ia jðM
ðPÞ
ij =2Þ. When summing all these terms across k (from

1 to KQ), we obtain
PKðQ Þ

k ¼ 1

PKðPÞ

i ¼ 1
Nik
2

� �
¼
PKðQÞ

k ¼ 1

P
i,jAQk ,ia jðM

ðPÞ
ij =2Þ,

i.e., r0 ¼ s0. Similarly, we can show that r1 ¼ s1. As a result,

ARIðP,Q Þ is equal to ARImpðMðPÞ,Q Þ.

(ii) Proof of ARImpðP,MðQ ÞÞ ¼ ARImmðMðPÞ,MðQ ÞÞ:

Considering the computation of ARImp (see Eqs. (12) and (13))

and ARImm (see Eqs. (14) and (15)), we only need to prove the

equivalence between s0 in Eq. (12) and t0 in Eq. (14). Following

Lemma 1, we know that s0 in Eq. (12) is equal to the total number

of pairs of points which belong to the same cluster in the two

partitions. Consider a cluster Pk from the partition P, we construct

its co-association matrix MðPkÞ as follows: MðPkÞ

ij ¼ 1 if the two

points xi and xj belong to Pk and MðPkÞ

ij ¼ 0 otherwise. Thus, we can

observe that
P

ia jðM
ðPkÞ

ij MðQÞij Þ is equal to the number of pairs of

points which are in cluster Pk and also belong to the same cluster

in partition Q. Since
P

ia jðM
ðPÞ
ij MðQ Þij Þ ¼

P
k

P
ia jðM

ðPkÞ

ij MðQ Þij Þ, i.e.,P
ia jðM

ðPÞ
ij MðQÞij Þ is equal to the number of point pairs that are in

the same cluster in both partition P and partition Q, we obtain

t0 ¼ s0. In addition, we obtain s1 ¼ t1 and s2 ¼ t2 since they are

both equal to the summed probabilities of pairs of points within

the same cluster in partition P and partition Q respectively. It then

follows that s3 ¼ t3 from Eqs. (12) and (14). Therefore, we can

obtain ARImpðP,MðQ ÞÞ ¼ ARImmðMðPÞ,MðQ ÞÞ. &
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4. Properties of generalized Adjusted Rand Indices

In this section, we introduce a number of desirable properties
of ARImp and ARImm, including the property ‘‘Detection of
Uncorrelatedness’’ inherited from ARI. Specifically, the ARI value
between two random partitions is close to zero. We shall prove
this property for ARImp and ARImm, i.e., (i) ARImp between a
consensus matrix constructed from random partitions and an
uncorrelated partition is close to zero and (ii) ARImm between
two uncorrelated consensus matrices constructed from two sets
of random partitions is close to zero. In this paper, a random
partition is obtained when data points are assigned to their clusters
at random based on a uniform distribution, i.e., the probability of a
point being assigned to one of the clusters is 1/K, where the number
of clusters K is randomly selected from 2 to the maximum number
Kmax with the uniform distribution.

4.1. Detection of uncorrelatedness
Proposition 2. For a data set with N points, given a consensus

matrixM computed from L random partitions fPðlÞgLl ¼ 1, and another

partition Q which is uncorrelated to any PðlÞ, we have limN-1

ARImpðM,Q Þ ¼ 0.

Proof. We first focus on the consensus matrix M which is
generated from the average of the individual co-association
matrices (Eq. (2)). Given a particular random partition generated
with the uniform distribution, say PðlÞ with K ðlÞ clusters, the
probability that the element in its co-association matrix MðlÞ

equals 1 (i.e., for the corresponding pair of points to belong to
the same cluster) can be determined as follows:

pðlÞ ¼ pðMðlÞij ¼ 1Þ ¼

KðlÞ

1

� 	
KðlÞK ðlÞ

¼
1

K ðlÞ
, pðMðlÞij ¼ 0Þ ¼ 1�

1

K ðlÞ
ð16Þ

That is, pðMðlÞij Þ is a Bernoulli distribution.

We then proceed as follows:

s1 ¼
X
ia j

Mij

2
¼
X
ia j

1
L

PL
l ¼ 1 MðlÞij

2

¼
1

L

XL

l ¼ 1

X
ia j

MðlÞij

2
¼

1

L

XL

l ¼ 1

NðN�1Þ

2
MðlÞij

� �
ð17Þ

where MðlÞij is the mean of MðlÞij . It is well known that the empirical

mean of a set of observed values of a random variable can be

approximated using the expectation of the variable, and the

expectation of a random variable according to a Bernoulli dis-

tribution with probability pðlÞ is pðlÞ itself. Thus, MðlÞij can be

approximated with pðlÞ. Setting l¼NðN�1Þ=2, we obtain

s1 ¼
1

L

XL

l ¼ 1

NðN�1Þ

2
MðlÞij

� �
�

l
L

XL

l ¼ 1

pðlÞ ð18Þ

Similarly, we can obtain

s2 ¼
XKðQ Þ
k ¼ 1

Nk

2

� �
¼
X
ia j

MðQ Þij

2
¼

NðN�1Þ

2
MðQ Þij � lpðQ Þ ð19Þ

In addition,

s3 ¼
2s1s2

NðN�1Þ
�

l
Lð
PL

l ¼ 1 pðlÞÞlpðQ Þ

l
¼

lpðQ Þ

L

XL

l ¼ 1

pðlÞ ð20Þ
On the other hand, we have

s0 ¼
XK ðQ Þ
k ¼ 1

X
i,jAQk ,ia j

Mij

2
¼
X
ia j

MðQ Þij Mij

2
¼
X
ia j

MðQ Þij �
1
L

PL
l ¼ 1 MðlÞij

2
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The seventh step uses the fact that partition Q is uncorrelated

with the partitions which are used to construct the consensus

matrix, and the eighth step follows from the approximation using

the expectation when N is large.

Thus, for ARImpðM,Q Þ, from Eq. (13), the numerator is given by
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and the denominator is given by
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In general, the denominator is not equal to zero. Since the numerator

is equal to zero, we can conclude that ARImpðM,Q Þ ¼ 0. &

Proposition 3. For a data set with N points, suppose that two

consensus matrices MðPÞ and MðQ Þ are constructed from two

uncorrelated random partition sets fPðlP ÞgLP

lP ¼ 1 and fQ ðlQ Þg
LQ

lQ ¼ 1 respec-

tively. We have limN-1ARImmðMðPÞ,MðQ ÞÞ ¼ 0.

Proof. Using Eq. (21), we have
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where the fourth step is obtained in a similar way as the
derivation of Eq. (21).

Also, from Eq. (18), we can obtain
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l
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Thus, for ARImpðMðPÞ,MðQ ÞÞ, from Eq. (15), the numerator is

given by

t0�t3 ¼ 0 ð27Þ
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and the denominator is given by
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In general, the denominator is not equal to zero. Since the numera-

tor is equal to zero, we can conclude that ARImpðMP ,MQ
Þ ¼ 0. &

4.2. Computation of ARImp/ARImm in a distributed environment

Another desirable property of ARImp/ARImm is that these
measures can be readily computed in a distributed environment.
Specifically, we consider two main scenarios:
(i)
 ARImp/ARImm can be effectively used to evaluate the clus-
tering quality when the data set is partitioned into different
subsets for processing, each of which is assigned to a node in
a distributed system. In real world applications, we need to
handle large data sets, and the cluster ensemble technique
provides an effective framework to perform this task in a
distributed manner. Specifically, data might be divided into
overlapping subsets, and each subset is clustered in one of the
nodes in a distributed system. Finally, all the clustering
solutions are aggregated to provide the consensus. However,
since each clustering solution associated with each node of
the system is related to only a subset of the complete data set,
there are currently no clustering measures for evaluating the
clustering quality in this case. It is interesting that ARImp/
ARImm can be used to solve this problem since they are based
on the consensus matrices rather than the individual cluster-
ing solutions themselves.
(ii)
 ARImp/ARImm can be effectively computed in a distributed
manner. Specifically, two consensus matrices can be divided
into a number of different sub-matrices, and these sub-matrices
can be used to reconstruct the two consensus matrices. For
example, assume that two 6�6 consensus matrices are divided
into four 3�3 sub-matrices respectively, it is straightforward to
observe that we can compute the ARImp/ARImm based on
factors computed with these sub-matrices. Specifically, for the
z-th sub-matrix of the two consensus matrices, tz

0,tz
1,tz

2 can be
computed using Eq. (14). Thus t0,t1,t2,t3 of the ARImm on the
two consensus matrices can be computed in a distributed
manner as follows:

t0 ¼
X

z

tz
0, t1 ¼

X
z

tz
1, t2 ¼

X
z

tz
2, t3 ¼

2t1t2

NðN�1Þ
ð29Þ

This distributed computation approach for ARImp/ARImm could
be useful in scenarios in which the issues of performance
requirement and/or data security are important.
4.3. Measuring the degree of uncertainty of a consensus matrix

One of the most important properties of ARImm is its ability to
measure the degree of uncertainty of a consensus matrix. We
consider a simple example. Assume that for three data points
x1,x2,x3, there are two consensus matrices Mð1Þ ¼ ½0 1 0; 1 0 0;
0 0 0� andMð2Þ ¼ ½0 0:5 0; 0 0:5 0; 0 0 0�.Mð1Þ shows that x1 and
x2 belong to the same cluster and x3 is assigned to another cluster,
all with probability 1. Similarly,Mð2Þ shows that x1 and x2 belong
to the same cluster with probability 0.5 and x3 is assigned to
another cluster with probability 1. For an effective matrix simi-
larity evaluation function simðÞ, we would like to argue that
simðMð1Þ,Mð1ÞÞ4simðMð2Þ,Mð2ÞÞ. This is because there is no
uncertainty within Mð1Þ while uncertainty does exist within
Mð2Þ. To our best knowledge, there are no other general matrix
comparison measures with this discrimination property. It is
interesting that ARImm has this very property, as ARImm

ðMð1Þ,Mð1ÞÞ ¼ 1, ARImmðMð2Þ,Mð2ÞÞ ¼ 0:4, which allows the discri-
mination of their difference.

One of the possible applications of this property of ARImm is
to evaluate the diversity of a cluster ensemble. Note that ARImm

ðM,MÞ can be computed based on only the consensus matrix M
instead of the individual clustering solutions, which is beyond the
capability of the traditional measure Pairwise Normalized Mutual
Information (PNMI). Another attractive property of ARImmðM,MÞ
is that we can derive the main property of its lower bound (the
upper bound of either ARImmðM,MÞ or PNMI is 1 when all the
individual clustering solutions are identical). It is also notable that
there is no previous study on the lower bound of PNMI in related
works.

Proposition 4. Lower bound of ARImmðM,MÞ. Given a consensus

matrixM constructed from a set of random partitions fPðlÞgLl ¼ 1 with

the maximum possible number of clusters Kmax. We can determine

that the lower bound of ARImmðM,MÞ is a constant value for each

fixed Kmax and L.
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Also, from the proof of Proposition 3, we obtain
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Thus, we can obtain the numerator and the denominator respec-

tively as follows:
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Therefore, we obtain
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It is interesting to note that the term
PKmax

k ¼ 1ð1=kÞ in Eq. (36) is

the well-known finite harmonic series, and
PKmax

k ¼ 1ð1=k2
Þ in

Eq. (37) is one of the well-known finite P-series (here P¼2). The

two terms can be directly computed when Kmax is small. When

Kmax is very large, they can be computed using the corresponding

approximate formulae. Thus, it is proved that the lower bound of

ARImmðM,MÞ converges to a constant value for each fixed Kmax

and L. &

5. Experiments

In this section, we conduct a number of experiments to verify
the properties of our proposed measures ARImp and ARImm, with
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Fig. 2. Detection of uncorrelatedness. For random partitions, ARImp and AR
comparison to other reference measures. We also introduce
several applications of ARImp and ARImm, which illustrate their
usefulness in different scenarios.

5.1. Properties of ARImp and ARImm

The experiments in this subsection are conducted for the
following purposes: (i) to verify the properties of ARImp and
ARImm; (ii) to investigate the effect of different factors, such as
the number of clusters K, the number of points N and the number
of clustering solutions L. In the propositions, we adopt descrip-
tions such as ‘‘if N is large’’. These experiments can provide
guidelines to answer the question ‘‘how large is enough for N?’’;
and (iii) to confirm the validity of approximating the mean of the
observed values of the random variable using its expectation for
the range of data set sizes used in our experiments.

5.1.1. Detection of uncorrelatedness

We first design experiments in a similar setting as those in
[29] to evaluate the performance of ARImp: consider a data set
with N points and a maximum number of clusters Kmax. For each
selected number of clusters K from 2 to Kmax, we specify a
corresponding ground truth partition, and generate L independent
clusterings, with their corresponding numbers of clusters selected
from 2 to 2K . For a thorough study, we have conducted a large
number of trials for different choices of N and K. The following
plots are shown in the first row of Fig. 2: (i) ANMI between the
clustering solutions and the true labels, and (ii) ARImp between
the consensus matrices of the individual clustering solutions and
the true labels. From the figure, we can observe that ANMI in
general increases as K increases (especially when the ratio N=K is
small), while ARImp is close to zero and does not sensitively
depend on K, which corresponds to the same behavior of ARI. We
can also observe that the variation of ARImp becomes smoother
when N is large enough (e.g., N4500). We also investigate the
similar issue for ARImm and the other measures based on matrix
comparison. Consider a data set with N points and a maximum
cluster number Kmax. For each selected true number of clusters K

from 2 to Kmax, two set of clusterings are generated. The first
0 5 10 15 20
.05

0

.05

0.1

.15

Number of clusters K

N=500, L=1000

ANMI
ARImp

0 10 20 30 40 50
−0.05

0

0.05

0.1

0.15

0.2

Number of clusters K

N=2000, L=1000

ANMI
ARImp

0 5 10 15 20
0.2

0
0.2
0.4
0.6
0.8

1
1.2

Number of clusters K

N=500, LP=100,
LQ=1000

NSF
KAS
sSMS
ARImm

0 10 20 30 40 50
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Number of clusters K

N=2000, LP=1000,
LQ=1000

NSF
KAS
sSMS
ARImm

Imm are close to zero, thus inherits the same desirable property of ARI.
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Fig. 3. Lower bound of ARImmðM,MÞ. The derived theoretical results agree with the simulation results. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Table 2
Summary of the UCI data sets used in the experiments.

Data set Class Instance Dimension

UCI-chart 6 600 60

UCI-glass 6 214 9

UCI-iris 3 150 4

UCI-pima 2 768 8

UCI-wine 3 178 13

UCI-vehicle 4 846 18

UCI-BCW-O 2 699 9

UCI-BCW-D 2 569 30
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cluster ensembles are generated from LP and LQ random indepen-
dent clusterings, and with their cluster numbers randomly
selected from 2 to 2K. Two consensus matrices are computed
based on these two clustering solutions respectively. Similarity
values of these four measures are shown in the second row of
Fig. 2. From the results, we can observe that for different values of
N,LP ,LQ , the other three measures are all greater than 0. Specifi-
cally, NSF and KAS tend to have values near 1, while the value of
sSMS tends to 0.5 with increasing N,LP and LQ. However, since
these clusterings are all generated randomly and independently,
it is reasonable to have a small similarity value as in the case of
ARI. It is interesting to observe that ARImm is close to zero and
insensitive to K, which corresponds to the same desirable prop-
erty of ARI.
5.1.2. Lower bound of ARImmðM,MÞ
We generate clusterings as those in the last subsection. In

Fig. 3, ARImm between an ensemble and itself are shown in blue,
and the computation results based on Eq. (35) are shown in red.
We can observe that the two curves are similar to each other
except for some slight differences when both N and L are small.
This shows that the derived theoretical results agree with the
simulation results.
5.2. Applications of ARImp and ARImm

5.2.1. Application 1: unsupervised filtering of cluster ensemble

methods (ARImp)

We conduct experiments using several popular public data
sets obtained from the well-known UCI machine learning
repository,1 which are usually used in clustering problems. All
1 http://archive.ics.uci.edu/ml/
of the data sets used in the experiments are summarized in
Table 2.

For each data set, 600 clustering solutions are generated using
K-means with three different methods, as performed in [3]. In
each case, 50 clustering solutions are sampled at random, and the
final clustering solution is obtained based on the true class
number K using the following different cluster ensemble meth-
ods: the cluster based Similarity Partitioning Algorithm (CSPA)
[1], the hypergraph based Meta Clustering Algorithm (MCLA) [1],
the Hypergraph Partitioning Algorithm (HGPA) [1], the Hybrid
Bipartite Graph Formulation (HBGF) algorithm [4], Normalized
cut based algorithm (NCUT) [5], and the hierarchical agglomera-
tive clustering algorithms with Average Link (AL) [7]. The scatter
plots constructed from 20 trials are shown in Fig. 4. In the plots,
the horizontal axis corresponds to the ARImp value between the
consensus matrix and the final clustering solution, and the
vertical axis corresponds to the ARI value between the ground
truth and the current clustering solution. From the figure, we can
observe that, in most of the cases, approaches with associated
large ARImp values and small variances in general also have large
ARI values, while those with associated low ARImp values and
large variances tend to have low ARI values. As a result, for a large
variety of data sets, we can use ARImp to identify less effective
cluster ensemble approaches associated with low ARImp values
or high ARImp variances.
5.2.2. Application 2: measuring the degree of uncertainty (ARImm)

In this subsection, we evaluate the diversity of the clustering
solutions using ARImm and PNMI. We first generate 600 cluster-
ing solutions as in the last subsection, and cluster these solutions
into three clusters using spectral clustering as performed in [3].
The smallest cluster is selected as the base group, and ARImm and
PNMI are computed for the clusterings in the base group. Then we
randomly divide the other two clusters into four partitions. The
four partitions of the second smallest cluster are added to the
base group one by one, and the corresponding ARImm and PNMI
are computed. Finally, the four partitions of the largest cluster are
also added to the base group, and the corresponding ARImm and
PNMI are also computed. In this way, we can investigate the
diversity of the 600 clusterings under nine different conditions.
ARImm and PNMI curves under these different conditions are
shown in Fig. 5, and the correlation value of ARImm and PNMI for
each data set is shown in the titles. It is interesting to observe that
the ARImm curves are similar to those of PNMI and they are
highly correlated (most of the correlation values are above 0.95).
As a result, we can conclude that ARImm can measure the degree
of uncertainty among a number of clustering solutions, as in
the case of PNMI, with the availability of only the consensus

http://archive.ics.uci.edu/ml/
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Fig. 4. Unsupervised filtering of cluster ensemble methods. Less effective cluster ensemble approaches can be identified if they have low ARImp values and large

variances.

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

clustering patitions

P
N

M
I/A

R
Im

m

UCI−CHART, corr = 0.999389

PNMI
ARImm

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

clustering patitions

P
N

M
I/A

R
Im

m

UCI−Glass, corr = 0.976241

PNMI
ARImm

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

clustering patitions

P
N

M
I/A

R
Im

m

UCI−iris, corr = 0.978386

PNMI
ARImm

0 2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

clustering patitions

P
N

M
I/A

R
Im

m

UCI−pima, corr = 0.978894

PNMI
ARImm

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

clustering patitions

P
N

M
I/A

R
Im

m

UCI−wine, corr = 0.958537

PNMI
ARImm

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

clustering patitions

P
N

M
I/A

R
Im

m

UCI−vehicle, corr = 0.964395

PNMI
ARImm

0 2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

clustering patitions

P
N

M
I/A

R
Im

m

UCI−bcw−n683d9c2, corr = 0.940344

PNMI
ARImm

0 2 4 6 8 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

clustering patitions

P
N

M
I/A

R
Im

m

UCI−Breast Cancer Wisconsin,
corr = 0.996517

PNMI
ARImm

Fig. 5. Measuring diversity of cluster ensembles: PNMI vs. ARImm. Curves of PNMI and ARImm are highly correlated.
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matrix, rather than requiring access to each individual clustering
solution.
5.2.3. Application 3: measuring different similarity matrices (ARImp

and ARImm)

As described in Introduction section, there are more applica-
tion scenarios for ARImp and ARImm beyond the context of
clustering ensemble. In this subsection, we introduce their cap-
abilities to evaluate different similarity matrices. In a number of
different application scenarios, different similarity matrices of
pairwise relationship are usually available (we only discuss the
most popular form of similarity matrices whose elements range
from 0 to 1). However, there are yet no effective measures to
evaluate the consistency either between different matrices with
the ground truth labels or among different matrices. ARImp and
ARImm could be used in these scenarios. We consider the analysis
of data set using two different normalization methods: (i) min–
max normalization which maps each feature component of the
data into the range [0, 1] and (ii) z-score normalization which
normalizes each feature component of the data by subtracting the
mean of each component and dividing by the standard deviation.
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Given two normalized points x1 and x2, the Gaussian kernel
similarity Zðx1,x2Þ ¼ expð�9x1�x29

2
=2Þ is used to construct the

similarity matrix. To analyze the similarity matrix, a certain
proportion of the entries in the matrix are replaced by the ground
truth value: Zðx1,x2Þ ¼ 1 if x1 and x2 belong to the same class, and
Zðx1,x2Þ ¼ 0 otherwise. ARImp curves between the group truth
labels and the similarity matrices of the two kinds of normalized
data are shown in Fig. 6, with the proportion of replaced entries
ranging from 0.1 to 0.9. From this figure, we can observe that for
all the data sets, with the proportion of replaced entries increas-
ing, ARImp values also increase accordingly.
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Fig. 7. Comparing the similarity between different similarity matrices: ARImm. It can

ground truth increases.
We also compute the similarity value between each pair of
these similarity matrices using ARImm, the Normalized Similarity
using the Frobenius norm (NSF), the kernel alignment similarity
(KAS) and the scaled Standardized Mantel Statistic (sSMS). These
results are shown in Figs. 7–10 respectively, where the darkness
of the gray level denotes the degree of similarity. From the
figures, we can observe that for all the data sets, the degree of
darkness increases in the bottom right direction, which are in
accordance with the proportion of replaced entries. Also, we can
see that the diagonal elements represent the value of ARImm
between each similarity matrix and itself. We also observe that
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Fig. 8. Comparing the similarity between different similarity matrices: NSF.
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for the measures NSF, KAS and sSMS in Figs. 8–10 respectively,
the diagonal blocks are distinctively dark. On the other hand, for
the measure ARImm, the transition between the gray levels is
more gradual, as shown in Fig. 7. This indicates that compared to
the other measures, ARImm can distinguish subtle differences
between the similarity matrices associated with different degrees
of uncertainty, which are consistent with the observations in
Application 2. This confirms the capability of ARImm to evaluate
the degree of uncertainty of the similarity matrices beyond the
scope of existing algorithms.
6. Conclusions

In this paper, we generalize the popular Adjusted Rand Index
(ARI) to two new measures, ARImp and ARImm, which can be
used to evaluate the consistency between clustering solutions and
the consensus matrix in a cluster ensemble, or between two
different consensus matrices. Desirable properties of ARImp
and ARImm are investigated from the perspectives of both
theoretical analysis and simulation experiments. We also conduct
a number of experiments on several UCI data sets to show the
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usefulness and effectiveness of the two proposed measures in
practical applications.
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