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Abstract

Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often
suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a
3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general
approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the
sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with
3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT.
Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at
first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require
the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions.
Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments
conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and
the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm.
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Introduction

Recognizing the identity of a person with high confidence is a

critical issue in various applications, such as e-banking, access

control, passenger clearance, national ID card, etc. The need for

reliable user authentication techniques has significantly increased

in the wake of heightened concerns about security, and rapid

advancement in networking, communication and mobility [1].

Biometrics, which refers to automatic identification of individuals

based on their measurable physiological or behavioral attributes, is

of great interest and has received considerable attention because of

their high accuracy and convenience to use in the modern e-world.

Due to the natural and non-intrusive nature of data acquisition,

the face has many benefits when compared to other biometric

identifiers.

Face recognition has received substantial attention over the last

three decades. To date, the majority of implemented face

recognition systems are based on 2D images. Unfortunately,

despite the great efforts made over the last decades, face

recognition using 2D images is still a great challenge due to kinds

of adverse factors, such as illumination variation, pose changes,

makeup, or facial expressions. The emergence of reliable and

inexpensive 3D scanners has provided new opportunities for

researchers to use 3D shape information of the face to obtain

better performance [2]. 3D scanning has a major advantage over

2D imaging in that those nuisance factors have a relatively smaller

influence. The 3D face recognition algorithms identify faces from

the 3D shape of a person’s face. In the literature, some works in

this field attempt to integrate discriminating information from 2D

and 3D modalities simultaneously [3] and others depend solely on

3D information. In this paper, our discussions are confined only to

the latter ones.

Previous Work
The task of recognizing 3D face scans have been approached in

various ways, leading to varying level of successes. Some

representative and prominent works will be briefly reviewed here.

The existing 3D face recognition algorithms can be roughly

classified into ‘‘holistic-based’’ and ‘‘local-based’’ techniques.

The holistic techniques employ information from the whole face

or at least from large regions of the 3D face. Many early-stage 3D

face recognition algorithms were simply extended versions of

holistic 2D approaches, in which the portrait images are replaced

by range images. Typically, the input range images are aligned

and then reformatted into feature vectors. After that, some

statistical dimensionality reduction techniques, such as the

principal component analysis (PCA) [4–8], the linear discriminant

analysis (LDA) [9,10], and the independent component analysis
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(ICA) [11], are adopted to learn the subspace of the feature

vectors. Thereafter, facial images are projected onto the learned

subspace and then are compared by means of a suitable metric in

that space.

Apart from the aforementioned appearance-based schemes,

there are also some other kinds of holistic techniques. Some

researchers attempted to deal with the 3D face recognition

problem by using ‘‘surface matching’’ techniques, in which the two

facial surfaces under comparison are iteratively registered as

closely as possible in 3D space by minimizing a distance metric.

Representative examples belonging to this category are iterative

closest point (ICP) and its various variants [12–15]. The ICP-based

surface matching techniques are robust to variable facial poses and

illumination variations. However, ICP-based registration proce-

dures are not guaranteed to converge to a global minimum and

they are computationally expensive. Another limitation of these

methods is their sensitivity to facial expressions, which actually are

non-rigid deformations of the facial surface [14]. Other methods

rely on deforming facial surfaces into one another under some

criteria, and use quantifications of these deformations as metrics

for face comparison. Representative works belonging to this

category include [16–18], in which elastic registration with

morphable models were used. In order to deal with variable facial

expressions, some researchers utilize geodesic distances between

points on facial surfaces to define features that are eventually used

for comparison. For the methods belonging to this category, they

assume that geodesic distances are relatively invariant to small

changes in facial expressions and can consequently help generate

features that are robust to facial expressions. Motivated by these

insights, Bronstein et al. [19,20] proposed a 3D face recognition

approach by matching intrinsic representations of facial features

that are computed using multi-dimensional scaling. Samir et al.

[21] proposed to use the level curves of the surface distance from

the tip of nose as features for face recognition. Berretti et al. [22]

used surface distances to extract equal-width iso-geodesic facial

stripes, which in turn, were used as nodes in a graph-based

recognition algorithm. However, approaches as proposed in

[21,22] are not able to deal with the problems caused by missing

data or occlusions, since under these cases the shape of the level

curves will definitely be affected. In [23], Mahoor and Abdel-

Mottaleb represent each range image by ridge lines on the 3D

surface of the face using a 3D binary image, namely ridge image,

which is the locus of the points which have principal curvatures

grater than a threshold. With respect to the matching strategy,

they also resorted to ICP. The limitation of [23] lies in that it can

only deal with frontal or near-frontal range scans. In [24], Drira

et al. represent facial surfaces by radial curves emanating from the

nose tips and use elastic shape analysis of those curves to develop a

Riemannian framework for analyzing shapes of full facial surfaces.

In [25], 3D face scans are represented in a canonical represen-

tation, namely, spherical depth map, from which spherical

harmonic features can be derived. Smeets et al. in [26] proposed

a geodesic distance matrix (GDM)-based representation scheme,

in which the vector of eigenvalues of GDM was used as an

isometry-invariant shape representation. Such a method is also

sensitive to the problems aroused by missing data or occlusions.

Although 3D data can offer several great advantages over their

2D counterparts, the non-rigid deformations due to facial

expressions, missing data, and self-occlusion problems caused in

data acquisition severely affect the accuracy of 3D face recogni-

tion. To cope with these issues, another common framework is

based on matching only parts or regions rather than matching full

faces. In [27], Lee et al. extracted eight fiducial points that are

geometrically invariant and then they used ratios of distances and

angles between fiducial points as features, followed by an SVM

classifier. Motivated by the research fruit of facial anthropometry,

Gupta et al. proposed a 3D face recognition approach, namely

‘‘Anthroface 3D’’ [28]. In ‘‘Anthroface 3D’’, ten anthropometric

facial fiducial points are detected at first, and then the facial 3D

Euclidean and geodesic distances between the detected fiducial

points are employed as features. The weakness of such an

approach is its sensitivity to the problems of missing data or

occlusions as under these adverse conditions, it is nontrivial to

faithfully detect the anthropometric fiducial points. In [29], Li

et al. designed a feature pooling and ranking scheme to collect

various types of low-level geometric features, such as the curvature

at the vertex, the area of each triangle, and the length of each

edge, and rank them according to their sensitivity to facial

expressions. In [30], Faltemier et al. proposed a region ensemble

based 3D face recognition framework. In their method, the nose

Figure 1. Shapes of two face scans in the scale space.
doi:10.1371/journal.pone.0100120.g001
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tip is automatically selected and then 28 face regions around the

face are extracted. When matching a gallery-probe pair, corre-

sponding regions are matched at first using ICP and then the

overall matching score is obtained as the fusion of the local

matching results. Such an idea of part-based matching [30] was

also explored in some other works, such as [31–36]. In [37],

Elaiwat et al. explored the curvelet transform to detect salient

points on the face scan and to build multi-scale local surface

descriptors. Inspired by SIFT [38], which is a quite successful

method for matching 2D images, Smeets et al. [39] developed a

meshSIFT algorithm which could detect keypoints and build local

descriptors for 3D meshes. Such an algorithm has been applied to

3D face recognition and promising results were reported on

Bosphorus database [40].

Overview of Our Approach
When missing data, large facial expressions, or occlusions exist

in 3D face scans, it would be difficult for an approach based on

holistic representations to succeed. Instead, methods resorting to

local representations seem more appealing. For most state-of-the-

art local representation based methods, it is imperative to detect

some semantic fiducial points at first, such as the nose tip, the eye

corners, the mouth corners, etc. However, it is nontrivial to design

an approach that can automatically and robustly detect fiducial

points when missing data, self-occlusions, or large expressions exist

in face scans.

In this paper, we propose a novel general 3D face recognition

scheme based on local representations. In such an approach, we

require neither the alignment of facial range images nor the

detection of meaningful fiducial points. Our approach is highly

motivated by the success of a recent work designed for 2D partial

face matching, namely MKDSRC (Multiple Keypoint Descriptors

and Sparse Representation based Classification) [41]. MKDSRC

proposed by Liao et al. [41] is an alignment-free 2D partial face

matching approach, in which each face is represented by a set of

descriptor vectors extracted from keypoints and a multi-task SRC

is used for classification. Such a method can address the problem

of 2D partial face matching pretty well.

Specifically in our approach, for each 3D face scan F, we at first

use meshSIFT [39] to extract from it multiple keypoints and then

build the associated local descriptors. By using meshSIFT,

keypoints are detected as mean curvature extrema in the scale

space. The set of local descriptors derived from F can be used as a

representation of F. In order to build the gallery dictionary, all the

local descriptors extracted from gallery samples are concatenated

together. Given a probe face scan, its local descriptors are

extracted at first and then its identity can be determined by using a

multi-task SRC. The proposed method is called 3DMKDSRC (3D

Multiple Keypoint Descriptors and Sparse Representation based

Classification). 3DMKDSRC uses a variable-sized description and

accordingly each face scan is represented by a set of descriptors.

Since the MKD dictionary comprises a large number of gallery

descriptors, it is highly possible to sparsely represent descriptors

from a probe scan, irrespective of whether it is a holistic, partial, or

occluded one. 3DMKDSRC is particularly appropriate for

matching 3D scans with missing parts, facial expressions, or

occlusions. Its efficacy has been validated on three widely used

benchmark databases.

The rest of this paper is organized as follows. Section 2 briefly

reviews meshSIFT, based on which we extract from 3D face scans

interest points and construct local descriptors. Section 3 presents

Figure 2. Keypoint detection results on three face scans of the same face.
doi:10.1371/journal.pone.0100120.g002

Figure 3. Nine regions involved in the computation of the local
descriptor. The red arrow indicates the canonical orientation.
doi:10.1371/journal.pone.0100120.g003
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our 3DMKDSRC approach in details. Section 4 reports the

experimental results while Section 5 concludes the paper.

meshSIFT

In our 3DMKDSRC approach, each 3D face scan is

represented by a set of local descriptors extracted from keypoints.

With respect to the scheme for keypoint detection and local

descriptor construction for 3D scans, we resort to meshSIFT [39],

which is an effective method designed for these particular tasks

proposed quite recently. MeshSIFT was highly motivated by SIFT

[38], which is now a widely used method to build scale invariant

local descriptors for 2D gray-scale images. In this section, we

briefly review the key steps of meshSIFT.

1. Keypoint Detection
The keypoint detection step in meshSIFT is similar to SIFT. A

scale space containing smoothed versions of the input mesh is

constructed at first as:

Ms~
M, if s~0bGGss6M, else

(
ð1Þ

where M stands for the original mesh, 6 stands for the

convolution operation, and ĜGss stands for the approximated

Gaussian filter with scale ss. These scales {ss} vary exponentially

as ss = 2s/ks0, where k stands for the number of total scales. Since

the number of convolutions is discrete, ss is approximated as:

esss~e

ffiffiffiffiffiffiffi
2s0

3

r
2

s
k ð2Þ

with �ee the average edge length. Fig. 1 shows the shapes of two face

scans in the scale space.

To detect keypoints in the scale space, the mean curvature is

computed for each vertex i at each scale s as:

Figure 4. If a query descriptor has a matched descriptor in gallery, the coefficient would be very sparse.
doi:10.1371/journal.pone.0100120.g004
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Figure 5. An example of a coefficient vector which is not sparse.
doi:10.1371/journal.pone.0100120.g005

Figure 6. The overall flowchart of 3DMKDSRC.
doi:10.1371/journal.pone.0100120.g006
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Hs
i ~

ks
i,1zks

i,2

2
ð3Þ

where ks
i, 1 and ks

i, 2 respectively stand for the maximum and

minimum curvatures for each vertex i at scale s. The difference

between subsequent scales could be computed as:

dHs
i ~Hsz1

i {Hs
i ð4Þ

A vertex is selected as a keypoint only when its value dHs
i is larger

or smaller than all its neighboring vertices in all upper, current,

and lower scales. The scale ss at which the extremum is obtained is

assigned to each keypoint. Fig. 2 shows an example of keypoint

detection results of 3 face scans collected from the same person.

2. Local Descriptor
Having detected keypoints, the next step is to describe them

with local descriptors which actually summarize the local

neighborhood information around them. In order to obtain an

orientation-invariant descriptor, each keypoint is assigned a

canonical orientation. With such a canonical orientation, it is

possible to construct a local reference frame in which the vertices

of the neighborhood can be expressed independent of the facial

pose.

For a keypoint P, all vertices within a spherical region of radius

9ss around it are its neighboring points. For each neighboring

point, its normal vector is computed and its geodesic distance to P

is determined based on the fast marching algorithm [42]. The

normal vectors of these points are projected onto the tangent plane

of the mesh containing P. The projected normal vectors are

gathered in a weighted histogram with 360 bins. Each histogram

entry is Gaussian weighted with the geodesic distances to P. The

highest peak in the histogram and the peaks above 80% of this

highest peak value are selected as canonical orientations. For a

keypoint which has more than one canonical orientations, it can

be regarded as multiple keypoints, each assigned one of the

canonical orientations.

The generation of a local descriptor for P is based on 9 sub-

regions. As described in Fig. 3, the locations of these 9 regions are

based on the canonical orientation of P. The geodesic distances

from the centers of regions 2, 4, 6 and 8 to P are all 4.5 ss, while

the geodesic distances from the centers of regions 3, 5, 7 and 9 to P

are all 4:5
ffiffiffi
2
p

ss.

For each of the 9 regions, two histograms pS and ph are used for

generating the descriptor. The first histogram contains the shape

index which is expressed as:

Si~
2

p
tan{1 ki,1zki,2

ki,1{ki,2

� �
ð5Þ

where ki,1 and ki,2 are the maximum and the minimum curvatures,

respectively. The second histogram contains the slant angles,

which are defined as the angles between the projected normals and

the canonical orientation. Both the shape index and the slant angle

histograms are Gaussian weighted with the geodesic distances to P.

Table 1. Rank-1 recognition rates on Bosphorus.

Approach Size of gallery set Size of probe set Rank-1 RR

3DMKDSRC (all) 315 4351 95.03%

3DMKDSRC (frontal) 315 3543 98.65%

meshSIFT (all) 315 4351 92.99%

meshSIFT (frontal) 315 3543 96.56%

ICP [6] (frontal) 47 1508 72.4%

PCA [6] (frontal) 47 1508 70.6%

Alyuz et al. [32] (frontal) 47 1508 95.3%

Dibekliglu et al. [33] (frontal) 47 1527 89.2%

Hajati et al. [34] (all) – – 69.1%

doi:10.1371/journal.pone.0100120.t001

Table 2. Rank-1 recognition rates on GavabDB.

Approach Size of gallery set Size of probe set Rank-1 RR

3DMKDSRC (neutral) 183 61 100%

3DMKDSRC (all) 183 244 92.62%

meshSIFT (neutral) 183 61 98.36%

meshSIFT (all) 183 244 86.22%

Moreno et al. [7] (all) 305 122 77.9%

Moreno et al. [35] (neutral) 60 60 78%

Mousavi et al. [8] (neutral) 61 61 91%

Mahoor et al. [23] (neutral) 61 183 95%

doi:10.1371/journal.pone.0100120.t002
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Finally, the histograms are concatenated in a vector form as

f = [pS,1ph,1…pS,9ph,9]T and f is regarded as the descriptor of P.

Consequently, each 3D face scan can be represented as a set of

descriptor vectors F = [f1,…, fn], where each fi is a local descriptor

vector.

3DMKDSRC

In this section, the proposed 3D face recognition scheme

3DMKDSRC will be presented in details.

1. Construction of the Gallery Dictionary
For each sample 3D face scan in the gallery set, its local

descriptors could be computed by meshSIFT. Then, the gallery

dictionary is constructed by concatenating these descriptors

together. Suppose that there are C subjects in gallery and for

each subject i there are totally ni derived descriptors. Usually, these

ni descriptors are obtained from multiple samples of the subject i.

For the ith subject, let

Di~½si,1,si,2,:::,si,ni
�[Rm|ni ð6Þ

where m here stands for the descriptor dimension. The gallery

dictionary D can be simply constructed by concatenating these Dis

as:

D~½D1,D2,:::,DC �[Rm|K ð7Þ

where K here represents the total number of descriptors in the gallery

set. Typically, K is very large, making D an over-complete

description space of the C classes. According to the theory of

compressed sensing, a sparse solution is possible for an over-

complete dictionary [43]; therefore, any descriptor from a probe

face scan can be expressed by a sparse linear combination of the

items from the dictionary D.

2. Multi-task Sparse Representation
Given a probe 3D face scan, we at first compute from it a set of

local descriptors:

Y~(y1,y2,:::,yn) ð8Þ

with n the number of keypoints detected from this scan. Then, the

sparse representation problem is formulated as:

bXX~ arg min
X

Xn

i~1

xik k0, s:t: Y~DX ð9Þ

where X = (x1, x2,…, xn)MRK6n is the sparse coefficient matrix,

and ||?||0 denotes the l0-norm of a vector. However, the solution

to this problem is NP-hard. As suggested by the research results of

compressed sensing [44], sparse signals can be well recovered with

a high probability via the l1-minimization. Therefore, Eq. (9) can

be approximated by:

bXX~ arg min
X

Xn

i~1

xik k1, s:t: Y~DX ð10Þ

where ||?||1 represents the l1-norm of the vector. This is a multi-

task problem as both X and Y have multiple columns.

Equivalently, we can solve the following set of n l1-minimization

problems, one for each probe descriptor yi:

bxxi~ arg min
x

Xn

i~1

xik k1, s:t: yi~Dxi,i~1,2,:::,n ð11Þ

To solve Eq. (11), several prominent algorithms have been

developed in the past few years, including Homotopy [45], FISTA

[46], DALM [47], SpaRSA [48], l1_ls [49], etc. In our

implementation, we use the Homotopy algorithm proposed in

[45]. Usually, if the identity of the probe face scan is covered by

the gallery set, the coefficient vectors of its local descriptors would

be very sparse as illustrated in Fig. 4.

Inspired by [41,50], we adopt the following multi-task SRC to

determine the identity of the probe face scan:

identity(Y)~ arg min
c

Xn

i~1

yi{Ddc(bxxi)k k2 ð12Þ

where dc(?) is a function which selects only the coefficients

corresponding to class c. Eq. (12) makes use of the sum of

reconstruction residuals of the n descriptors with respect to each

class to determine the identity of the input face scan.

3. Dictionary Shrinking and Sparsity Criterion
In practice, the size (K) of the dictionary can be extremely large,

making it difficult to solve Eq. (11). Hence, we adopt a similar idea

as Liao et al. [41] to derive a fast approximate solution. For each

probe descriptor yi, we first compute:

d i~DT yi ð13Þ

Then, for each yi, we only keep L (L,,K) descriptors in D
according to the L largest values of di, resulting in a small sub-

dictionary D
(i)
m|L: Then, D is replaced by D(i) in Eq. (11) and Eq.

(12) is adjusted accordingly. In our implementation, L is set to 400.

In addition, we assume that if the identity of the probe face scan

belongs to the jth subject of the gallery, the entries of x̂xi should be

small except those associated with the jth subject. If the coefficients

x̂xi are not concentrated on any subject and instead values of x̂xi

spread evenly over all the gallery subjects, yi is likely to be a noisy

Table 3. Rank-1 recognition rates on FRGC2.0.

Approach Size of gallery set Size of probe set Rank-1 RR

3DMKDSRC 1259 2748 89.29%

meshSIFT 1259 2748 87.85%

doi:10.1371/journal.pone.0100120.t003
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descriptor and it can provide little discriminative information.

Thus, such x̂xi will not be considered when computing Eq. (12).

To evaluate the sparsity of x̂xi , we use,

sparsity(bxxi)~
k:Main(bxxi)= bxxik k1{1

k{1
ð14Þ

where k is the number of subjects in D(i) and Main(x̂xi) stands for

the summation of absolute values of coefficients in x̂xi correspond-

ing to the first 5 percent of subjects with higher sums of absolute

coefficients. If sparsity(x̂xi) is larger than a threshold (0.8 in our

implementation), we consider that x̂xi is sparse enough and it will

be involved in the further determination of identity (see Eq. (12)).

Fig. 5 shows an example of the distribution of a coefficient vector

which is not sparse.

The overall pipeline of our proposed 3DMKDSRC algorithm is

illustrated in Fig. 6.

Experimental Results and Discussions

In this section, we will provide a comparative performance

analysis of our method with the other state-of-the-art or

representative approaches using three public datasets, Bosphorus,

GavabDB, and FRGC2.0.

1. Experiments on Bosphorus
The Bosphorus database [40] consists of 4666 facial range scans

from 105 different subjects and is acquired by an Inspeck Mega

Capturor 3D scanner leading to 3D point clouds of approximately

35000 points. In Bosphorus, facial expression variations, pose

variations, and occlusions are present. The majority of the subjects

are aged between 25 and 35.

In our experiment, we chose 3 face scans with neutral

expressions to form the gallery set, making the gallery set have

315 samples. When forming the test set, two cases were

considered. In the first case, the test set included all the remaining

samples, while in the second case the test set only contained

remaining frontal samples. Besides 3DMKDSRC, meshSIFT was

also evaluated under the same experimental settings. The

identification results in terms of rank-1 recognition rate are

summarized in Table 1. In addition, results of several other

algorithms are also reported. They include ICP based method [6],

PCA based method [6], Alyuz et al.’s method [32], Dibekliglu

et al.’s method [33], and Hajati et al.’s method [34], It needs to be

noted that experiments conducted in [6], [32] and [33] were based

on Bosphorus 2.0 which contains 2491 facial scans collected from

47 subjects, smaller than the one used in our experiments. In

addition, only frontal samples were involved in those experiments.

From the results listed in Table 1, it can be seen that the

proposed 3DMKDSRC performs much better than the other

methods evaluated.

2. Experiments on GavabDB
GavabDB [51] is designed to be the most expression rich and

noise prone 3D face database. The database consists of the

Minolta Vi-700 laser range scans from 61 subjects. For each

subject, 9 scans are collected, covering different poses and various

facial expressions. We skipped those 2 types of scans which are

largely rotated (690 degrees). For each subject, we chose 3 neutral

faces to build the gallery set. When forming the test set, two cases

were considered. In the first case, the test set included all the

remaining samples, while in the second case the test set only

contained remaining neutral samples. Besides 3DMKDSRC,

meshSIFT was also evaluated using the same experimental

protocol. The rank-1 recognition rates are summarized in

Table 2. In addition, results of several other representative

algorithms, including Moreno et al.’s method [7,35], Mousavi

et al.’s method [8], and Mahoor et al.’s method [23], are also

reported in Table 2 for comparison.

The superiority of 3DMKDSRC over the other competitors can

be clearly observed from the results listed in Table 2. Particularly,

when the test set only contains samples with neutral expressions,

the rank-1 recognition rate of 3DMKDSRC can reach 100%,

which is quite amazing.

3. Experiments on FRGC2.0
FRGC2.0 [52] database contains 4007 6406480 3D range

scans which were taken under controlled illumination conditions

by a Minolta Vivid 900/910 series 3D sensor. The face scans came

from 466 different subjects.

In this experiment, we randomly chose 3 face scans for each

subject to form the gallery set. For the subject which has less than 3

samples, we just put all its samples in the gallery. The rest of the

faces in the database were used for testing. The rank-1 recognition

rates obtained under those settings by 3DMKDSRC and

meshSIFT are listed in Table 3. Actually, some state-of-the-art

methods, such as [24], could achieve higher recognition accuracy

than 3DMKDSRC on FRGC2.0. However, it should be noted

that those methods would usually apply a complicated data

preprocessing procedure (e.g., hole filling) on the face scans in

FRGC2.0 to improve the data quality. By contrast, in our

experiments, no extra data preprocessing was performed. That’s

the main cause accounting for the lower recognition accuracies of

3DMKDSRC and meshSIFT reported here. 3D data preprocess-

ing is an independent area and in the future we may try to give

deeper investigations in this field.

Conclusions

In this paper, we have addressed the problem of 3D face

recognition and proposed a novel approach, namely

3DMKDSRC. 3DMKDSRC represents each 3D face scan by a

set of keypoint descriptor vectors extracted by meshSIFT and

constructs a large dictionary from all the gallery descriptors. At the

testing stage, descriptors of a probe face scan can be sparsely

represented by the dictionary, and its identity can be determined

accordingly by solving a multi-task SRC problem. 3DMKDSRC is

particular appropriate for matching range scans with missing

parts, large expressions, or occlusions. Its efficacy has been

corroborated by the extensive experiments conducted on various

benchmark databases.
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