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Abstract

Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a
person’s identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature
and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the
literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by
proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient
template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common
canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature
extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of
a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based
classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work
introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on
a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source
code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/
srcear.htm.
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Introduction

In modern society, with the development of hardware and the

awareness of security among people, recognizing the identity of a

person with high confidence has become a key issue and a topic of

intense study [1]. Conventional card based, or user name and

password based, authentication systems have shown unreliability

and inconvenience to some extent. Instead, biometrics based

methods, which use unique physical or behavioral characteristics

of human beings, are drawing increasing attention in both

academic research and industrial applications because of their

high accuracy and robustness in the modern e-world. With the

rapid development of computing techniques, in the past several

decades or so, researchers have exhaustively investigated a number

of different biometric identifiers, including fingerprint, face, iris,

palmprint, hand geometry, voice, gait, etc [2].

Compared with classical biometric identifiers such as fingerprint

[3] and face [4], the ear is relatively a new member in the

biometrics family and has recently received some significant

attention due to its non-intrusiveness and ease of data collection.

As a biometric identifier, the ear is appealing and has some

desirable properties such as universality, uniqueness and perma-

nence [5,6]. The ear has a rich structure and a distinct shape

which remains unchanged from 8 to 70 years of age as determined

by Iannarelli in a study of 10,000 ears [5]. As pointed out by

Chang et al. [7], the recognition using 2D ear images has a

comparable discriminative power compared with the recognition

using 2D face images.

According to the types of input data, ear recognition problems

can be classified as 2D, 3D, and multimodal 2D plus 3D. Most

existing studies made use of only 2D profile images and the

representative works belonging to this category can be found in

[7–14]. Besides the traditional 2D ear sensing, there now also

exists technologies to acquire 2D plus 3D ear data simultaneously.

With the developing and popularizing of 3D sensor technology,

there is a rising trend to use 3D sensor instead of traditional 2D

camera in ear recognition research. Compared with 2D data, 3D

ear data contains more information about ear shape and is not

sensitive to illumination and occlusion. In [15], Yan and Bowyer

found that ear matching based on 3D data could achieve a higher

accuracy than that making use of the corresponding 2D images.

In this paper, we address the problem of 3D ear identification.

To this end, we propose a novel effective and efficient fully

automatic 3D ear recognition approach based on the sparse

representation framework [16]. The remainder of this paper will

be arranged as follows. Related work and our contributions of this

paper are described in Section 2. The proposed template-based

ear detection approach is elaborated in Section 3. The feature

extraction scheme and the classification approach are described in

Section 4. Results of performance evaluations are presented in

Section 5. Finally, Section 6 concludes the paper.

Related Work and Our Contributions

1. 3D Ear Recognition
3D ear biometrics is relatively a new research area and there

have been a few studies conducted. Some prominent and
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representative relevant works are briefly reviewed here. Chen and

Bhanu are among the earliest scholars conducting research on 3D

ear biometrics. In [17], they proposed a method for detecting the

ear region from a profile range image. Their approach is a two-

step system, including model template building and online

detection. The model template is obtained by averaging the shape

index histograms of multiple ear samples. The online detection

process consists of four steps, step edge detection and thresholding,

image dilation, connected-component labeling, and template

matching. In [18], Chen and Bhanu proposed a shape-model

based technique for locating ears in a side face range image.

However, how to match two ears was not mentioned in [18]. In

[19], Chen and Bhanu proposed a two-step iterative closest point

(ICP) [20] based approach for 3D ear matching. In the first step,

the helix of the test ear is detected and is coarsely aligned with the

model ear helix by using ICP; in the second step, the ICP

algorithm iteratively refines the transformation to bring model ears

and the test ear into best alignment. The root mean square (RMS)

distance is used as the matching error criterion. The shortcoming

of the work [19] is that all the ear regions were extracted from

profile images manually. In their later work [21], Chen and Bhanu

developed a fully automatic 3D ear matching framework. In [21],

they proposed two shape representations for 3D ear, namely, a

local surface patch (LSP) representation and a helix/antihelix

representation. Both of the shape representations are used to

estimate the initial rigid transformation between a gallery-probe

pair. A modified ICP algorithm is then used to iteratively refine

the alignment. In [22], Yan and Bowyer conducted an experi-

mental investigation of ear biometrics and they exploited several

different approaches, including the eigen-ear method using 2D

intensity images as input, principal component analysis (PCA)

applied to range images, Hausdorff matching of depth edge images

derived from range images, and ICP-based matching of the 3D

data. In their later work [23], Yan and Bowyer proposed a fully

automatic 3D ear recognition system, in which for ear region

detection they tried to locate the ear pit and then used the active

contour algorithm [24] to extract the ear contour. With respect to

the strategy for matching two ears, they again resorted to ICP. In

[25], Passalis et al. proposed a generic annotated ear model (AEM)

to register and fit each 3D ear and then a compact biometric

signature was extracted containing 3D information. In their later

paper [26], they extended their work by developing a semi-

automatic multi-modal 3D face and 3D ear recognition system.

Such a system processes each modality separately and the final

decision is determined based on the weighted average of the two

similarity measures from the face and the ear modalities. In [27],

Cadavid and Abdel-Mottaleb proposed an approach for 3D ear

biometrics using video sequences. For each subject, a 3D ear

model is derived from a video clip and ICP is adopted for

computing the matching distance between two ear models. In

[28], Islam et al. adapted the face recognition framework

developed in their previous work [29] and proposed a coarse-to-

fine 3D ear recognition approach. In their method, ear regions are

detected from 2D profile images by training an AdaBoost classifier

and then the corresponding 3D ear data is extracted from the co-

registered range image. For ear matching, they also adopted ICP.

In their latest work [30], Islam et al. tried to combine the 3D face

and the 3D ear to build a multimodal biometrics system. In [31],

Liu explored a fast recognition mechanism based on local surface

matching with ICP registration to solve the 3D ear recognition

problem under low cost strip point cloud environment. For a more

comprehensive recent review of the ear biometrics, readers can

refer to [32].

2. Sparse Representation in 3D Biometrics
It has been found that natural images can be sparsely coded by

structural primitives [33] and in recent years sparse coding or

sparse representation has been successfully applied to a variety of

problems in computer vision and image analysis, including image

denoising [34], image restoration [35,36], object classification

[16,37,38], visual saliency [39], and blind image quality assess-

ment [40]. The great success of sparse representation can be

partially attributed to the progress of l0-norm and l1-norm

minimization techniques [41–46].

In [16], Wright et al. made use of the sparse representation

based classification (SRC) framework to address the face

recognition problem and achieved impressive performances. With

SRC, a query face image is first sparsely coded over the gallery

images and then the classification is performed by checking which

class yields the least coding error. Motivated by the great success of

Wright et al.’s work, some other researchers have tried to apply

SRC to other kinds of classification problems and among these

works there are a few relevant to 3D biometrics. A representative

work specializing on applying SRC to 3D biometrics is [47]. In

[47], Li et al. proposed a 3D face recognition approach based on

SRC. In their work, for each 3D face, a feature vector comprising

a set of low-level features, such as the curvature at the vertex, the

area of each triangle, the length of each edge etc., is extracted and

fed into the sparse representation based classifier for classification.

With a similar idea as [47], there are other two works also focusing

on SRC-based 3D face recognition [48,49]. The difference among

the works [47], [48] and [49] mainly lies in that they made use of

different schemes for the feature extraction and selection.

3. Motivations and Contributions
From the aforementioned introduction and analysis, it can be

seen that most existing 3D ear matching methods are based on

ICP or its variants. While ICP is a feasible 3D matching approach

for the one-to-one verification case, it is not quite appropriate for

the one-to-many identification case. If there are multiple samples

for each subject in the gallery set, to figure out the identity of a

given test sample using an ICP-based matching method, it would

be necessary to match the test sample to all the samples in the

gallery set one-by-one. With the number of gallery samples rising,

the performance of ICP-based methods will markedly drop down.

Figure 1. The general flowchart of our proposed 3D ear
identification approach.
doi:10.1371/journal.pone.0095506.g001

3D Ear Identification Based on SR
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Actually, the task of identification is essentially to find out a single

class containing samples most similar to the input test sample out

of the entire gallery set. To solve such a one-to-many identification

problem, Wright et al. [16] have demonstrated that SRC is an

effective and efficient tool. In addition, researchers have also

shown the feasibility of making use of SRC to solve the 3D face

Figure 2. Illustration for the proposed ear pit detection scheme. (a) The nose tip is first located in the binary mask. (b) When the nose tip is
detected, we can further locate the ear pit within a sector associated to the nose tip.
doi:10.1371/journal.pone.0095506.g002

Figure 3. Flowchart of the proposed ear detection scheme.
doi:10.1371/journal.pone.0095506.g003
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recognition problem [47–49]. However, to the best of our

knowledge, there is no work so far reported to apply SRC to

address the 3D ear recognition problem.

Based on these considerations, in this paper, we propose a novel

fully automatic 3D ear identification approach based on sparse

representation, whose general architecture is shown in Fig. 1.

From Fig. 1, it can be seen that our approach mainly consists of

three components, ear detection and extraction, feature extrac-

tion, and SRC-based classification. To match the SRC classifier

used at the classification stage, for ear detection, we propose a

template based scheme which is robust to pose change. Since with

such an ear detection scheme the extracted ear region will be

aligned to the template ear contour model, all the extracted ears

consequently reside in a common canonical coordinate system.

Therefore, at the identification stage, we do not need to register

the test ear sample to the gallery samples, which is crucial for the

usage of SRC. For feature extraction, we propose an effective

PCA-based local descriptor for the local 3D range data, which is

highly inspired by Mian et al.’s salient work [50]. Feature vectors

are extracted from ear samples in the gallery set and they form an

overcomplete dictionary A. When a new test ear sample comes, its

feature vector y will be extracted and then its identity can be

figured out by using the SRC which codes y over the dictionary A.

Our approach takes the 3D range image as the only input and no

extra color image is required. The performance of the proposed

approach is evaluated on the benchmark dataset and is compared

with the ICP based method. Efficacy and efficiency of our

approach are corroborated by the experimental results.

Template-based Ear Detection

In this section, the proposed template-based ear detection

method will be presented. Actually, most of the existing ear

Figure 4. Feature samples computed by using the proposed feature extraction method. (a) Feature maps from different samples of ear A.
(b) Feature maps from different samples of ear B. (a) Feature maps from different samples of ear C.
doi:10.1371/journal.pone.0095506.g004
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detection or ear region extraction approaches use only 2D profile

images. However, when the ear data is acquire by 3D sensors,

sometimes the corresponding 2D color images cannot be gained or

have occlusion problems. Thus, in our paper we present an

automatic ear detection approach totally based on 3D range data.

In our work, however, the role of the ear detection is not only to

locate and extract the ear region out of the input 3D ear data but

also to align the extracted ear region to a template ear contour

model. In this way, all the extracted ears are represented in a

common canonical coordinate system. In our system for each ear,

the input 3D ear data is just a 6406480 side face range scan. Since

there are pixels which fail to record the corresponding vertices for

a range scan, a binary image (usually provided along with the 3D

range data) is utilized to indicate whether a pixel contains a vertex.

1. Ear Pit Detection
The binary image actually is a mask, each pixel of which

indicates whether the corresponding pixel in the range scan

contains a valid vertex. In order to locate the ear pit, we first need

to locate the nose tip, which will greatly narrow down the

searching range for the ear pit in the following process. Identifying

the location of the nose tip is accomplished in the image space of

the binary mask, which comprises the following two steps,

a) Record the X value along each row at which we first

encounter a white pixel in the binary image and find the

mean value Xmean of X values.

b) Record the Y values of those rows whose starting ‘‘white’’

pixels have X values smaller than Xmean and greater than Xmean

- 100. And we denote the mean of these Y values by Ymean.

Within a 60 pixel range above and below of the Ymean, the

Figure 5. Illustration for the key steps of SRC-based 3D ear identification. (a) Illustration for the process of the proposed SRC based ear
identification approach. (b) The values of the sparse coefficients recovered by SRC. (c) Reconstruction residuals obtained by using different ear classes
to reconstruct the input test sample.
doi:10.1371/journal.pone.0095506.g005

Figure 6. Samples of 3D side face range data in UND-J2 database.
doi:10.1371/journal.pone.0095506.g006
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valid point with minimum X value is the nose tip and its

position is represented by (XNoseTip, YNoseTip).

We use the Z value in the range scan as the intensity for each

pixel to generate a 2D intensity image, and the further locating of

ear pit is performed in such an image. Based on the location of the

nose tip, we can generate a corresponding sector which the ear pit

should fall in. Such a sector can narrow down the searching range

for identifying the ear pit. With the point (XNoseTip, YNoseTip) as the

center, we define this sector as a fan region spanning +/230

degrees from the horizontal. In this sector, we reject pixels of

which the corresponding vertices have a distance larger than

16 cm or smaller than 4 cm to the nose tip. To identify the ear pit,

we propose a simple yet effective method. We assume that the ear

pit should be the point of which the Z value is the lowest within a

circular range. Following this rule, we pre-generate a random

sample pattern which consists of 150 points within a circle whose

radius is 30-pixels. For each point falling in the sector, we sample

the points in its neighborhood via the pre-generated sample

pattern. The points with the lowest depth values in their local

neighborhoods are valid candidates for the ear pit. By observing

the distribution of these candidates, we found that the true ear pit

must lie on a cluster which contains several candidates. Hence, we

remove the isolated candidates having no other candidates

around, which could be caused by noise or hair interference.

From the remaining candidates, we regard the one with the

smallest depth value as the ear pit. Procedures for the ear pit

detection are illustrated by using an example in Fig. 2.

2. Ear Contour Alignment and Ear Region Extraction
In order to partially solve the pose change problem and to make

the extracted ear regions reside in a common canonical coordinate

system, we adopt the ICP algorithm to align the ear contour of the

sample being processed to an ear contour template created offline

manually. Such an idea is inspired by the work [21]; however,

there are some differences. At first, in our case, since the ear pit

has already been detected, the computational cost of ICP-based

contour matching could be reduced by aligning the ear pits first.

Secondly, in our case, ICP matching is performed in the 2D image

space, which is much faster than the one working in the 3D space.

We built an ear contour template by manually selecting the ear

pit point, 30 helix points, and 10 antihelix points from one

instance of samples from UND-J2 ear database [51]. The ear

contour template finally generated is shown in Fig. 3. For each 3D

side face image being processed, we at first extract the sector

region containing the ear. Then, we apply a Canny edge detector

on the extracted sector of the depth image and we can

consequently get an edge map which can be regarded as the

contour of the ear. After that, we register the obtained edge map to

the ear contour template roughly by aligning the detected ear pit

to the template ear pit. Then, an ICP algorithm is applied in the

image space to refine the alignment further. After that, we

transform the original input 3D range data into the coordinate

system defined by the ear contour template by using the

translation and rotation matrices obtained in the ICP alignment.

Finally, a pre-defined rectangular region is extracted from the

transformed range data and it is taken as the resulting ear region.

By using the template-based contour alignment, the final

extracted 3D ear region is robust to ear pose change and there

is little difference for the ears extracted from the same person. In

addition, with such a scheme, all the extracted ear regions are

represented in the same canonical coordinate system defined by

the ear contour template, which facilitates the following feature

extraction and classification. Fig. 3 illustrates the main steps

involved in our proposed ear detection scheme.

Ear Identification based on Sparse Representation

In this section, we will present our SRC-based ear identification

approach in detail. At first, how to extract features from 3D ear

range data will be introduced. Then, details for classification will

be presented.

1. Ear Feature Extraction
In order to make use of the SRC for classification, we need to

map the extracted 3D ear data into a feature vector of a fixed

length. The commonly used features for 3D shapes, like Li et al.

adopted in [47], are point curvature, triangle area, and so on. But

the difficulty is to build one-to-one correspondences between two

3D shapes. In our case, however, since we have aligned all 3D ear

data to a canonical coordinate system defined by the ear contour

template in the ear detection step, the one-to-one correspondences

have already been built automatically and the feature extraction

could be directly applied to the extracted 3D ear data.

Instead of using traditional features like curvatures, we proposed

a local PCA-based feature descriptor greatly inspired by Mian

et al.’s work [50]. The extracted 3D ear could be represented as a

point cloud: E = {[xi, yi, zi]
T, where i = 1,…, n}. For each point pi

in E, let L = {[xj, yj, zj]
T, where j = 1,…, ni } be the points in a

region cropped by a sphere of radius r centered at the point pi.

Table 1. Rank-1 recognition rate.

M = 5 M = 7 M = 10

ICP 83.83% 89.64% 94.09%

Our Algorithm 87.79% 91.53% 95.23%

doi:10.1371/journal.pone.0095506.t001

Table 2. Time cost for 1 identification operation (seconds).

N = 850 N = 889 N = 925

ICP 127.45 131.61 144.31

Our Algorithm 0.041 0.044 0.047

doi:10.1371/journal.pone.0095506.t002

3D Ear Identification Based on SR
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Given the dataset L, we can calculate its mean vector m and its

covariance matrix C,

m~
1

ni

Xni

j~1
Lj ð1Þ

C~
1

ni

Xni

j~1
LjL

T
j {mmT

� �
ð2Þ

where Lj represents the coordinate of the jth point in the point set

L. Then, an eigen-value decomposition is performed on the

covariance matrix C and we can get a matrix V comprising

eigenvectors and a diagonal matrix D of eigenvalues of C,

CV~VD ð3Þ

Then, we can map point set L to L9 by,

L’j~VT Lj{m
� �

ð4Þ

Let L9 x and L9 y be the projections of points L on its first and

second principal components, respectively (these two principal

components correspond to the first two largest eigenvalues). The

feature value at point pi could be defined as,

di~ max (L’x){ min (L’x){( max (L’y){ min (L’y)) ð5Þ

According to Mian et al. [50], di actually represents the

difference between the lengths of the first two principal axes of

the local region around the point pi and it will be zero if the point

cloud L is planar or spherical. However, if there is unsymmetrical

variation in L, then di will have a non-zero value proportional to

the variation. Such a PCA-based local feature descriptor was

originally proposed for key-points detection [50]. In [50], Mian

et al. regard the points with high di values as key points. In our

case, however, we simply utilize di as a local feature descriptor.

After computing {di} for all the points {pi} in the ear region, we

can obtain a feature map. In order to be used by the following

classification stage, the feature map needs to be reformulated as a

column vector. Fig. 4 demonstrates some examples of the

calculated feature maps, shown in image format. The three rows

of Fig. 4 correspond to three different ears while for each row, the

four feature maps are computed from four different samples

collected belonging to the same ear. From Fig. 4, we can have the

following findings. At first, the proposed feature can reflect

anatomical information of the ear very well. Secondly, by using the

proposed method, feature maps derived from the different samples

of the same ear look quite similar to each other while the ones

computed from different ears are apparently different.

The dimension of the feature vectors obtained with the above

scheme is quite high and it is not effective to directly feed them

into the SRC for classification. Therefore, a further dimension

reduction operation is necessary and to this end, we adopt the

random projection approach introduced by Wright et al. in [16],

which is quite simple yet effective.

2. Ear Recognition via SRC
Given an ear gallery set, we compute a feature vector v from

each ear in gallery and form them to a dictionary matrix

A = [v11,…, v1k, v21,…, v2k,…, vn1,…, vnk][IRm6nk, m here

represents the feature dimension, n represents the number of ears,

and k represents the number of samples for each ear in the gallery.

Given a query ear sample, denote by y its feature vector. The

recognition problem can be viewed as solving the following over-

completed linear equation,

x�0~ arg min xk k0, subject to y~Ax ð6Þ

x* 0 here is a l0-minimization solution for this equation. However,

the problem of identifying the sparsest solution of an under-

determined system of linear equations is NP-hard and difficult

even to approximate. Fortunately, recent development in optimi-

zation theories reveals that if the solution x* 0 sought is sparse

enough, it can be well approximated by the solution of the

following l1-minimization problem [41],

x�1~ arg min xk k1, subject to y~Ax ð7Þ

With x* 1, we can compute the reconstruction residual when using

the samples of the ear class i to approximate the test sample y as,

ri~ y{
Xk

j~1
x�1ijvij

���
���

2
ð8Þ

where x* 1ij represents the (ij)th coefficient of the solution vector x*

1. We then can classify y based on these reconstruction residuals

by assigning it to the ear class that minimizes the reconstruction

residual.

To better handle the noise and corruption problem, we used an

extensional sparse representation by substituting B = [A, I] for the

original A where I is the identity matrix. Therefore, the final

sparse representation algorithm we adopt is,

w�1~ arg min wk k1, subject to y~Bw ð9Þ

We extract x* 1 by decomposing w* 1 as w* 1 = [x* 1, e] and

the construction residual calculation should also be substituted by,

ri~ y{e{
Xk

j~1
x�1ijvij

���
���

2
ð10Þ

We can easily recognize any given query ear by solving the

above l1-minimization problem in one matching step. For solving

the l1-minimization problem, several prominent algorithms have

been developed in the past few years, including Homotopy [42],

FISTA [43], DALM [44], SpaRSA [45], l1_ls [46], etc. In this

paper, we adopt DALM algorithm [44] as the l1-minimization

solver, which has been proved fast and accurate.

In Fig. 5(a), we use an example to demonstrate the process of

the proposed SRC-based ear identification approach. After the ear

region is extracted and aligned with the ear contour template, its

feature map is extracted. Then, such a feature map is stacked into

a feature vector and fed into the SRC for classification. From

Fig. 5(b), we can see that if the identity of the test sample exists in

the gallery, the solved solution is very sparse and usually, the

largest coefficient corresponds to the gallery sample most similar to

3D Ear Identification Based on SR
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the test sample. Fig. 5(c) plots the reconstruction residuals obtained

by using different gallery classes to reconstruct the test sample. The

least reconstruction residual usually occurs with the class having

samples most similar to the test sample and thus the reconstruction

residual can be an indication of the potential identity of the test

sample.

Experimental Results and Discussions

In this section, we will present the evaluation results of the

proposed method. The database we used in our experiment is

UND collection J2 dataset [51]. The UND-J2 dataset is currently

the largest 3D ear dataset which consists of 2436 side face 3D scan

from 415 different persons. Several samples are shown in Fig. 6.

Each 3D ear data is a 6406480 3D scan.

1. Evaluation of the Ear Detection Performance
To validate our ear detection algorithm, we manually marked

ear pits for the whole UND-J2 dataset. In our experiment, we run

the experiment on all the 2436 ears of UND-J2. For each 3D ear,

we compared the automatic detected ear pit location (Xauto_earpit,

Yauto_earpit) with the ground-truth ear pit location (Xgt_earpit,

Ygt_earpit) and if the Euclidean distance of two positions were

larger than 16 pixels, we regarded the ear detection for this ear as

failure.

Under these experimental settings, our algorithm could achieve

a 90.87% detection rate which is much higher than 85% reported

in [28] by using the method proposed in [23] on the same dataset.

2. Evaluation of the Identification Performance
Although there are 415 subjects in UND-J2 database, most

subjects have only 2 samples. Since the recognition based on

sparse representation needs sufficient samples for each class in the

gallery [16], we cannot run our experiment on the whole database.

In our experiment, we selected three subsets from UND-J2

database. The first subset contained 185 ears of UND-J2, each of

which had more than 5 samples and the second subset contained

127 ears, each of which had more than 7 samples and the third

subset contained 85 ears, each of which had more than 10

samples. For subset1, we randomly selected 5 samples from each

ear to form the gallery and the rest of ears were formed to the test

set. So the gallery size for subset1 was 925, and the test set size was

885. For subset2, we randomly selected 7 samples from each ear to

form the gallery and the rest of ears were formed to the test set.

Thus, the gallery size for subset2 was 889, and the test set size was

588. For subset3, we randomly selected 10 samples from each ear

to form the gallery and the rest of ears were formed to the test set.

Consequently, the gallery size for subset3 was 850, and the test set

size was 291.

We tested our ear recognition algorithm on those three different

subsets respectively and we also evaluated the performance of ICP

under the same condition. Since there were multiple samples for

each ear class in the gallery, we used ICP to match a query ear

with all the samples for each ear class and regarded the minimum

matching error as the matching error for that ear class. Finally, we

took the label of the ear class generating the minimum matching

error as the identity for that query ear. Table 1 lists the rank-1

recognition rates achieved by using our algorithm and ICP, where

M stands for the number of samples for each ear class in the

gallery. Table 2 lists the time cost consumed by one identification

operation, where N stands for the gallery size.

3. Further Discussions
From experimental results shown in Table 1, it can be seen that

our proposed method performs better than ICP in terms of rank-1

recognition rate.

The greatest advantage of our algorithm over ICP is that it has a

low time cost. Table 2 compares the computational time cost for

one ear query process. To recognize the identity for one query ear,

the ICP based algorithm has to compare the query ear to all the

gallery ears and each comparison needs an ICP alignment for the

two ear shapes. Without a previous rejection process, the whole

recognition process will cost a lot of time. Different from ICP, the

recognition process based on sparse representation just solves an

l1-minimization problem based on pre-calculated features, so it is

much faster than ICP based approaches. With gallery size rising,

the computational time of ICP approach will hugely rise.

However, the computational time of sparse representation based

on DALM algorithm changes little with the enlargement of the

gallery size, which can be reflected from the results listed in

Table 2.

Conclusions

In this paper, we proposed a novel 3D ear identification

approach. In order to make use of the sparse representation

framework for identification, we proposed a novel template-based

ear detection method. By using this method, extracted ear regions

are in a common canonical coordinate system defined by the ear

contour template, which highly facilitates the following feature

extraction and recognition steps. Compared with the classical ICP-

based ear matching methods which will match the test sample to

all the gallery samples one-by-one to determine its identity, the

proposed SRC-based method is more efficient. Experiments were

conducted on UND-J2 3D ear database and the results indicate

that the proposed method could achieve high ear detection rate,

high identification accuracy, and low computational cost.
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