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Abstract: Semantic similarity defined on Gene Ontology (GO) aims to provide 
the functional relationship between different GO terms. In this paper, a novel 
method, namely the Shortest Path (SP) algorithm, for measuring the semantic 
similarity on GO terms is proposed based on both GO structure information and 
the term’s property. The proposed algorithm searches for the shortest path that 
connects two terms and uses the sum of weights on the path to estimate the 
semantic similarity between GO terms. A method for evaluating the nonlinear 
correlation between two variables is also introduced for validation. Extensive 
experiments conducted on the PPI dataset and two public gene expression 
datasets demonstrate the overall superiority of SP method over the other state-
of-the-art methods evaluated. 
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1 Introduction  

Genome sequencing projects are now producing a large amount of biological data. For 
the sake of exploring and making use of these data, an efficient system to describe their 
biological properties becomes important. Toward this end, many functional descriptor 
systems have been established in the past years. For example, the MIPS Functional 
Catalogue (FunCat) (Ruepp et al., 2004) is a biological function annotation database aims 
at describing the functions of proteins of prokaryotic and eukaryotic origins. Currently, 
FunCat consists of 28 primary function classes, e.g., metabolism, transcription, protein 
synthesis, and 1362 more specific function categories. Another important annotation 
system is Gene Ontology (GO), which is more widely used in describing functional 
propertities of genes and proteins. GO not only focuses on describing the protein/gene 
functions, but also attempts to characterise other properties like the cellular localisation 
of the proteins, as well as the relationships between these properties. The complexity of 
protein properties leads to the intricacy of the GO structure. In the next two subsections, 
we shall introduce more details about GO and the functional similarity defined on GO. 
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1.1 Gene Ontology 

Gene Ontology (The Gene Ontology Consortium, 2000) is a structured and controlled 
vocabulary, which characterises the functional properties of gene/proteins using 
standardised terms. GO is composed of three independent ontologies: Biological Process 
(BP), Molecular Function (MF), and Cellular Component (CC). Unlike the disjoint 
classes used in FunCat, GO adopts a more complex structure to describe protein 
properties and the relationships between them. The first concept in GO is the GO term. A 
GO term is a word used to describe a certain functional property. Every GO term has a 
corresponding GO ID in the form of ‘GO:*******’. For example, the GO ID for the term 
‘cellular_component’ is GO:0005575. The second concept is the relationships defined 
between GO terms. There are two kinds of relationships: ‘is-a’ relationship and ‘part-of’ 
relationship. If two terms A and B have a ‘is-a’ relationship, it means term A is an 
instance of term B. For example, nucleus is a cellular component. Therefore, the terms 
‘nucleus’ and ‘cellular_component’ are connected by ‘is-a’ relationship. If A and B have 
a ‘part-of’ relationship, it means that A is a component of B. For example, nucleolus is a 
part of nucleus. They are connected by a ‘part-of’ relationship. One term may be linked 
with two or more terms. Terms, together with the relationships, are represented using 
Directed Acyclic Graphs (DAG). Figure 1 presents a subgraph extracted from the CC 
ontology. It can be seen that the terms are located at different layers according to their 
specificities. ‘Cellular_component’ is the root term containing the most general 
information. Other terms, like ‘nucleus’ and ‘cytoplasm’, are located at the lower layers 
because they have more specific meanings compared with the root term. Relationships 
between terms are represented by arrows. Terms at the end of the arrows are called 
‘ancestors’, while terms at the start of the arrows are called ‘descendents’. Ancestors and 
their descendents are connected by different relationships. The complexity of GO lies in 
the intricacy of the relationships of terms. From Figure 1, it can be seen that descendents 
may have more than one ancestor and vice versa. 

Figure 1 A subgraph extracted from the Cellular Component ontology. Arrows with solid lines 
represent the ‘is-a’ relationships, and arrows with dash lines represent the ‘part-of’ 
relationships (see online version for colours) 
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GO structure provides abundant information which can facilitate the existing clustering 
and classification algorithms (Dotan-Cohen et al., 2009; Pandey et al., 2009; Wang et al., 
2005; Denaxas and Tjortjis, 2008; Chen and Tang, 2010) in bioinformatics. 

1.2 Semantic similarity on GO 

Semantic similarity is an important type of information derived from GO, the concept of 
which is originally used in the field of linguistics. In linguistics, two words are 
considered to be similar if they have similar meanings. When GO was first constructed, 
its biological terms and graphical structures allow the comparisons between two GO 
terms based on their semantic contents. For example, in Figure 1, ‘mitochondrion’ is 
more similar to ‘ribosome’ than to ‘nucleolus’, because mitochondrion and ribosome are 
both in cytoplasm while nucleolus is in the nucleus. 

To estimate the semantic similarity between two GO terms in the early years, the 
previously defined methods in linguistics were used directly to measure the semantic 
similarity over the terms in GO (e.g., Resnik’s method (Resnik, 1999) and Lin’s method 
(Lin, 1998)). In 2003, Lord et al. (2003) discovered that the semantic similarity 
calculated from annotations correlates well with the sequence similarity. After that, many 
new approaches have been proposed specifically for measuring the semantic similarity on 
GO (Schlicker et al., 2006; Wang et al., 2007). Although new methods are proposed from 
time to time, they all have their own advantages and limitations and there is still a large 
scope for improvement.  

Semantic similarity can be defined for both the GO terms and gene products. The 
state-of-the-art methods for specifying semantic similarity over the GO terms can be 
divided into three groups: edge-based, node-based, and a hybrid of the above two. For the 
edge-based approaches, they mainly consider the lengths of the paths connecting the 
terms (Cheng et al., 2004; Pekar and Staab, 2002) as the distance between the terms. For 
the node-based methods, they rely on the properties of the terms derived from 
information theory (Jiang and Conrath, 1997; Lin, 1998; Resnik, 1999; Schlicker et al., 
2006). There are also hybrid methods that consider both the substructure of GO and the 
properties of terms involved (Wang et al., 2007). 

Based on the semantic similarity over terms, the semantic similarity for gene products 
can be defined as the maximum (‘Max’) (Wu et al., 2005), or average (‘Ave’) (Wang 
et al., 2005) value of the semantic similarity between their annotations. In addition to the 
‘Max’ and ‘Ave’ methods, there are some more complicated methods proposed in 
(Schlicker et al., 2006; Wang et al., 2007). The details of these methods will be described 
in Section 2. 

In this work, we propose a new method for measuring the semantic similarity over 
GO terms. The new method is proposed based on the observation that, if two terms 
diverge at the higher levels of GO, the discrepancy between the functions represented by 
the terms should be larger, and vice versa. The new method aims to find a path 
connecting the terms and uses a metric defined on the path to characterise the semantic 
similarity of two terms. If the path is long, which means that the two terms diverge at a 
higher level, the terms are different. On the contrary, if the path is short, the terms are 
similar to each other. 

To evaluate the accuracy of the existing methods for measuring semantic similarity, 
manually curated information and experimental data (e.g., Protein-Protein Interaction 
(PPI) (Xu et al., 2008), pathway information (Wang et al., 2007), and gene expression 
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data (Xu et al., 2008)) have been used. In the previous work, researchers often use the 
Pearson correlation score between the similarity based on gene expression data and the 
computed semantic similarity to assess the accuracy of the proposed methods. However, 
in this paper, we introduce another validation approach to replace the previously used 
Pearson correlation coefficient. 

The rest of the paper is organised as follows. Section 2 introduces a number of 
representative methods for semantic similarity computation over terms and genes. 
Section 3 presents the algorithm proposed by us for measuring the semantic similarity 
over terms. Section 4 reports the experimental results obtained from five different 
methods. Finally, Section 5 concludes the paper with a summary. 

2 Measuring semantic similarity on GO 

Existing methods for semantic similarity computation over terms generally fall into three 
categories: edge-based, node-based, and a hybrid of the former two. 

Edge-based methods are intuitive, among which (Pekar and Staab, 2002) and (Cheng 
et al., 2004) are two representative ones. Suppose t1 and t2 are two terms, and t is their 
lowest common ancestor. The distance method in (Pekar and Staab, 2002) counts the 
number of edges connecting the root with t, and the number of edges connecting t with t1 
and t2. The distance between t1 and t2 is calculated using equation (1) below and can be 
easily converted to a similarity value: 

1 2
1 2

len(root, )
len(root, ) len( ,

dist(
) len( , )

, ) t
t t t t

t
t

t
+

=
+

 (1) 

where len(x, y) is the length of the path connecting the nodes x and y, represented by the 
number of edges on the path. The distance method assumes that the weight of each edge 
is always 1. Another edge-based algorithm (Cheng et al., 2004) uses the average length of 
all paths that go through the longest partial path shared by two nodes. The edges are 
weighted using the depth information. The disadvantage of the edge-based methods is 
that the weights of the edges at the same level are assumed to be the same. However, the 
terms at the same level of GO do not necessarily correspond to the same specificity, and 
accordingly the edges connecting two terms do not necessarily have the same weights. 

Node-based methods focus mainly on the specificity of the terms, which is expressed 
using the concept of Information Content (IC). The IC value for a term t is defined as 

IC (t) = –log p(t) (2) 

where p(t) is the probability of occurrence of the term t in a certain corpus (e.g., SGD 
database). All the node-based methods are defined based on the IC values of the GO 
terms involved. 

Resnik’s method (Resnik, 1999) is one of the first methods using IC values to 
measure the semantic similarity for GO terms. In this method, the semantic similarity for 
terms t1 and t2 is defined as 

1 2
Resnik ancester ( , )1 2sim ( , ) max ( )

t t t
t t IC t

∈
=  (3)  

where t is the common ancestor of t1 and t2. Term t with the largest IC value is also  
called the Most Informative Common Ancestor (MICA). Because Resnik’s method only 
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considers the specificities of the common ancestors when measuring the semantic 
similarity of two GO terms, Lin’s (Lin, 1998) and Jiang’s (Jiang and Conrath, 1997) 
methods made some improvements by adding the IC values of the terms t1 and t2. Their 
methods involve the specificities of t1 and t2, since with an increase of the two terms’ 
specificities, the terms will become less similar. The model used in Lin’s and Jiang’s 
methods is represented as Eqs. (4) and (5) below.  

Lin 1 2
1 2

2 ( )
( ) ( )

sim ( , ) IC t
IC t I

t
C

t
t+

=  (4) 

Jiang 1 2sim 1 ( ( (( ) )) 2 )IC t I ICC tt= − + −  (5) 

where t is the MICA of t1 and t2. From these equations, it can be seen that, if the IC 
values of t1 and t2 increase, which means their specificities increase, the similarity will 
decrease.  

From equations (4) and (5), it can also be seen that, when t1 is equal to t2, the 
semantic similarity of the two terms will correspond to the value of 1, which indicates 
that, compared with itself, the similarity will stay at the largest value regardless of the 
specificity of the term. However, since the terms at the top levels of GO are less specific 
than the leaf terms, the similarities between these terms and themselves should be smaller 
accordingly. To address this issue, (Schlicker et al., 2006) revised Lin’s method by 
incorporating a weight item as shown in equation (6) below, and referred to it as the 
Relevance method: 

rel 1 2 Lin 1 2sim ( , ) sim ( (1 (, )))t t t pt t−=  (6) 

In addition to the edge-based and node-based methods, there are also a number of hybrid 
methods proposed, e.g., Wang’s method (Wang et al., 2007). In this method, a term A can 
be represented as a DAG structure, where DAGA = (A, TA, EA). TA is a set containing term 
A and all its ancestors in a GO graph. EA is a set containing edges that connect terms in 
TA. To compute the semantic similarity, Wang’s method also defines an S-value for each 
term in the set TA. The S-value of a term t in TA, SA(t), can be calculated using equation 
(7) below. 

( ) 1
( ) max{ ( ) | descendents( })

A

A e A

S A
S t w S t tt if t A

=
 = × ′ ′ ≠∈

 (7) 

we is the weight of the edge e in EA connecting term t and its descendent t′For an ‘is-a’ 
relationship, the weight is 0.8, and for a ‘part-of’ relationship, the weight is 0.6.  

The semantic similarity of two terms A and B is computed based on their DAG 
structures using equation (8) below. 

Wang

( ( ) ( ))
sim ( , )

( ) ( )
A B

A B

t A BT

AT T

T

Bt t

S t S t
B

S t t
A

S
∈ ∩

∈ ∈

+
=

+
∑
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 (8) 

After calculating the semantic similarity over the terms, the next step is to define a 
measure for the semantic similarity over gene products. The often used methods are the 
‘Max’ (Wu et al., 2005) and ‘Ave’ (Wang et al., 2005) methods. Given two gene products 
g1 and g2, the semantic similarities between their annotations form a semantic similarity 
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matrix. For the ‘Max’ method, the semantic similarity is the maximum value in the 
matrix. For ‘Ave’ method, it is the average value over the matrix. They can be computed 
using equations (9) and (10) below respectively.  

1
2 2

1
Max annotation(1 2 1 2

annotation (
)
)

sim ( , ) max sim( , )
t g
t g

g g t t
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=  (9) 

1
2 2
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1 2 1 2
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)
)

n(
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t
g
g

t

g g t t
∈
∈

=  (10) 

where annotation(g1) and annotation(g2) are annotations for g1 and g2. There are some 
more complicated methods defined for special structures, e.g., the method proposed by 
(Wang et al., 2007). The evaluation of these methods shows that the similarity obtained 
using the ‘Max’ method is best correlated with the gene expression data. However, the 
‘Max’ method is more sensitive to outliers, while the ‘Ave’ method is relatively stable 
(Xu et al., 2008). 

3 Method 

3.1 The SP algorithm 

As mentioned in Section 2, for edge-based methods, the weights of the edges conflict 
with the property of GO, and for node-based methods, only IC values of the two terms 
and their MICAs are considered regardless of their positions in GO. To address these 
drawbacks, we propose a new hybrid method, namely the Shortest Path (SP) algorithm, to 
measure the semantic similarity over terms in GO. 

It is intuitive that, given two terms tA and tB, if they diverge at a higher level (i.e., their 
MICA is nearer to the root), the difference between them should be larger; while if they 
diverge at a lower level, the difference should decrease. Under this assumption, the SP 
algorithm first assigns the weights to the GO terms using the reciprocal of their IC values. 
With an increase of the term’s IC value, i.e., the increase of its specificity, its weight will 
decrease. Then the algorithm finds the path connecting the two terms and their MICA 
with the smallest sum of weights, and defines the sum of the weights on the path as the 
semantic distance for the terms. This path is referred to as the shortest path. The rationale 
behind the algorithm is that, if MICA is near the root, the weights on the shortest path 
will increase and vice versa. Therefore, the sum of the weights on the shortest path is 
consistent with the expected distance and can be used as its estimation. 

The SP algorithm can be described as follows. Given two terms tA and tB, the 
normalised distance between them is defined as: 

1 2path p

SP

ath
1 2

1 1arctan
[ ] [ ]

dist ( , )
/ 2

A B

A B

t tIC t IC t
t t

π

∈ ∈

 
+ 

 =
∑ ∑

 (11) 

where pathA (pathB) is the shortest path that connects the term tA (tB) with MICA; t1 and t2 
are the terms located on pathA and pathB. Because MICA appears in both pathA and pathB,  
it is considered only once in equation (11). The function of arctan is to normalise the  
distance obtained by summing the weights of the terms on the shortest path to [0, 1]. 
After the normalisation, the semantic similarity can be defined as 
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SP SPsim ( , ) 1 dist ( , )A B A Bt t t t= −  (12) 

We propose to use Dijkstra algorithm to determine the shortest path connecting MICA 
and tA (tB), and we need to transform the weights associated with nodes to the 
corresponding edge weights. The weight of each edge is assigned as the weight of the 
more specific term between the two that it connects to. Dijkstra algorithm is then used to 
find the shortest path on the new edge-weighted graph. In equation (11), when the 
weights on pathA or pathB increase, i.e., MICA and its descendents on the shortest path 
become more general, the distance increases and the semantic similarity decreases. 

We show an example of computing the semantic similarity for the terms 
GO: 0006793 and GO: 0008219 in Figure 2. In the first step, the SP algorithm calculates 
the IC values for the terms on the graph using equation (2). In practice, several R 
packages (e.g., (Froehlich et al., 2007)) provide IC information for GO terms. Therefore, 
the IC values can be retrieved from these packages when needed. In this example, 
ICGO: 0006793 = 3.5402 and ICGO: 0008219 = 3.5285. In the second step, SP algorithm weights 
each term using the value of 1/IC, i.e., weightGO:0006793=1/3.5402 = 0.2825, and 
weightGO:0008219 = 1/3.5285 = 0.2834. The weights of the other terms are computed in a 
similar way. In the third step, SP algorithm finds the MICA (GO: 0009987) and  
the shortest paths connecting MICA and the two terms. In this example, there is only  
one path starting from GO: 0006793 (GO: 0008219) to MICA. Therefore, it is marked  
as the shortest path and shown in Figure 2 in red. The distance between GO: 0006793 and 
GO: 0008219 is the normalised sum of weights on the shortest paths, i.e., dist = arctan 
(0.2825 + 0.7242 + 2.1179 + 0.2834)/(π/2) = 0.8183. The semantic similarity sim is 
calculated as 1 – 0.8183 = 0.1817. 

Figure 2 An example of semantic similarity computation for GO: 0008219 and GO: 0006793. 
Paths in red are the Shortest Paths connecting the two terms and their MICAs (see 
online version for colours) 

 

SP algorithm integrates the information from two sources, which are the structure 
information contained in the paths connecting the terms, and the IC information of the 
terms represented by the weights on the graph. When searching for the shortest path, both 
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structure and IC information will be considered, unlike the existing edge-based/node-
based methods that use only structure/IC information. 

3.2 Validation method 

Several types of data can be used to assess the accuracy of existing methods for 
measuring semantic similarity. In this paper, we use both PPI data and gene expression 
datasets to evaluate the correctness of computed semantic similarities. 

3.2.1 Assessment of semantic similarity based on protein-protein interactions 

The validation process using PPI information is as follows. First, for each pair of proteins 
(interacting pair or otherwise), their GO annotations (represented by GO terms) are 
retrieved from a suitable biological database (e.g., SGD, Uniprot). Then, semantic 
similarities over these GO terms are computed using the methods to be evaluated. After 
that, the semantic similarities over proteins can be calculated by existing methods for 
measuring semantic similarity over genes, e.g., the ‘Max’ or ‘Avg’ method. An accurate 
method means that, for proteins that have interactions, their semantic similarities should 
be large. On the contrary, for proteins that have no interactions, their semantic similarities 
should be small. 

To quantitatively assess the correctness of computed semantic similarity using PPI 
information, Receiver Operating Characteristic (ROC) curve analysis is adopted. ROC 
curves are plotted based on the True Positive Rate (TPR) and the False Positive Rate 
(FPR) (defined below). 

TruePositiveTPR
TruePositive FalseNegative

=
+

 (13) 

FalsePositiveFPR
TrueNegative FalsePositive

=
+

 (14) 

Area Under a Curve (AUC) is computed for each ROC curve to measure the accuracy of 
the corresponding methods. A larger AUC value indicates a higher accuracy for a 
particular method. 

3.2.2 Assessment of semantic similarity based on gene expression data 

The validation process using gene expression data is similar to the process using PPI 
data. For genes in the expression profile, their semantic similarities are first computed in 
the same way as described in Section 3.2.1. 

To assess the correctness of computed semantic similarity using gene expression data 
means that we need to find out whether the estimated semantic similarity is in line with 
the similarity based on the expression data. In general, a higher correlation indicates a 
better performance. The Pearson correlation coefficient is often used to evaluate the 
linear dependency between two variables. When dealing with the nonlinear dependency 
problem, evaluation using Pearson correlation will not be suitable. Here we introduce an 
approach for characterising nonlinear correlation (Sheikh et al., 2006). 

Given a set of points {(x1, y1), (x2, y2), …, (xn, yn)}, the first step of the algorithm is to 
apply regression analysis to find a fitting curve f (x). The curve corresponds to a 
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nonlinear mapping between x = {x1, …, xn} and y = {y1, …, yn}. In the next step, the 
Pearson correlation coefficient is calculated between y and f (x) after nonlinear 
regression. In addition to the Pearson correlation coefficient, another metric referred to as 
Root Mean Squared Error (RMSE) is also calculated between y and f (x) using equation 
(15) below. RMSE is used to measure the difference between values predicted by the 
model (i.e., f (x)) and the observed values (i.e., the value of y). A smaller RMSE 
corresponds to a better prediction model. 

2
1
( ( ))

RMSE .
n

i ii
y f x

n
=

−
= ∑  (15) 

4 Experiments and results 

In the experiments, we evaluated the performance of our SP method together with other 
four state-of-the-art methods for measuring the semantic similarity over the terms. In 
Section 4.1, we will present the experimental details, including the description of the 
datasets and the experimental setup. Then, in Section 4.2, the experimental results 
together with some explanations will be given. 

4.1 Data description and experimental setup 

We downloaded 4510 pairs of S. cerevisiae protein-protein interactions from the 
Database of Interacting Proteins (DIP) (Scere20100614, core version) (Xenarios et al., 
2002). Interactions between the same proteins are removed from the list. The remaining 
protein pairs are used as the positive samples in the experiments. Besides, we randomly 
constructed 3377 pairs of proteins which are not in the DIP and used them as the negative 
samples. 

In addition, we used two gene expression datasets in the experiments. The first one is 
the Eisen dataset (Eisen et al., 1998), which consists of 2467 genes. The second one is the 
Spellman dataset (Spellman et al., 1998), containing 6178 genes. The details of the 
datasets are described in Table 1. The missing values in the two datasets were filled in 
using the impute package from the bioconductor project (Gentleman et al., 2004). 

The annotations for proteins and genes were retrieved from the Saccharomyces 
Genome Database (SGD). In our experiments, we used the annotations from BP 
ontology. According to (Xu et al., 2008), terms at the top levels will create noise. 
Therefore, in our experiments, annotations at the first three levels were removed. Proteins 
and genes that are annotated only by these general terms were removed afterwards. In the 
end, 3184 positive protein interactions, 3348 negative protein interactions, 2461 genes in 
the Eisen dataset, and 5545 genes in the Spellman dataset were used. These 
proteins/genes together with their BP annotations and expression data can be downloaded 
from http://www.cs.cityu.edu.hk/~yingshen/IJDMB/data/data.zip.  

The similarity based on the gene expression data is calculated using the Pearson 
correlation and is referred to as the expression similarity. 

We evaluated another four state-of-the-art methods including Resnik’s (Resnik, 
1999), Jiang’s (Jiang and Conrath, 1997), the Relevance (Schlicker et al., 2006) method 
from the node-based category, and Wang’s (Wang, 2007) method from the hybrid 
category, as a comparison to the SP algorithm. We used the GOSim package (Froehlich 
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et al., 2007) to calculate the semantic similarity for Resnik’s, Jiang’s and the Relevance 
methods, and the GOSemSim package (Yu et al., 2010) for Wang’s method.  

To compute the semantic similarity over gene products, we used the ‘Max’ operation 
for all the five methods, since it consistently results in the best correlation scores for all 
the methods measuring the semantic similarity over the terms (Xu et al., 2008). 
Table 1 Gene expression datasets used in the experiments 

 No. of genes No. of experiments Species 

Eisen  2467 79 yeast 
Spellman 6178 77 yeast 

4.2 Experimental results 

4.2.1 Results based on PPI data 

We first sorted the semantic similarities between proteins in descending order. Then we 
computed TPR and FPR according to the labels. Resulting ROC curves for the five 
methods are shown in Figure 3. Corresponding AUC values are listed in Table 2. It can 
be seen that the SP method achieves the best AUC score among all the five methods. 
Although the AUC score of Wang’s method is only slightly smaller to that of our method, 
it has the significant disadvantage of long computation time, on which we will provide 
further explanation in Section 4.2.2. 
Figure 3 ROC curves for the five methods (see online version for colours) 

 
Table 2 AUC values for the ROC curves shown in Figure 3 

 Jiang  Resnik Wang Relevance SP 

AUC 0.7713 0.8397 0.8426 0.7798 0.8457 

4.2.2 Results based on gene expression data 

In the previous works, Pearson correlation was used to evaluate the consistency between 
the semantic similarity and the expression similarity. We first equally divided the interval 
[0, 1] into 1000 sub-intervals. Then we calculated the semantic similarity and  
the expression similarity for each gene pair. All the gene pairs were assigned to the  
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sub-intervals according to their absolute gene expression similarity. After that, we 
calculated the average semantic similarity for each interval. Finally, the Pearson 
correlation coefficient value was calculated between the average semantic similarity and 
the expression similarity. The correlation coefficients for the different methods are shown 
in Table 3. From this table, it can be seen that the SP method proposed by us performs the 
best among the five methods. Specifically, our method achieves the correlation 
coefficient values of 82.8% and 86.9% on the Eisen and Spellman datasets respectively, 
which are about 3% higher than the second best methods (i.e., Wang’s method on the 
Eisen dataset and Resnik’s method on the Spellman dataset), and a more significant 
improvement over the others. 

Next, we calculated the nonlinear correlation coefficients and RMSE values for the 
average semantic similarity and the expression similarity using the method introduced in 
Section 4. The following mapping is used for the nonlinear regression analysis (Sheikh 
et al., 2006; Zhang et al., 2010; Zhang et al., 2011): 

2 31 4 5( )

1 1( )
2 1 ea x af x a a x a−

 = − + + + 
 (16) 

where ai, i = 1, 2, …, 5 are parameters to be determined. 

Table 3 Pearson correlation coefficient 

 Jiang  Resnik Wang Relevance SP 

Eisen 0.7901 0.8031 0.7955 0.7817 0.8278 
Spellman 0.7436 0.8383 0.8368 0.7718 0.8685 

Table 4 Nonlinear correlation and RMSE on Eisen dataset 

 Jiang  Resnik Wang Relevance SP 

corr 0.9939 0.9602 0.9950 0.9581 0.9892 
RMSE 0.0249 0.0299 0.0190 0.0321 0.0166 

Table 5 Nonlinear correlation and RMSE on Spellman dataset 

 Jiang  Resnik Wang Relevance SP 

corr 0.9133 0.9295 0.9636 0.8869 0.9656 
RMSE 0.0738 0.0518 0.0435 0.0553 0.0354 

Table 6 Time consumption (sec) for the example shown in Figure 1 

 Jiang  Resnik Wang Relevance SP 

Time 0.02 0.01 0.42 0.01 0.15 

The correlation coefficients and RMSE values on the Eisen dataset and the Spellman 
dataset are listed in Tables 4 and 5 respectively. Figure 4 shows the scatter plots of the 
min-max normalised gene semantic similarity vs. the expression similarity for the five 
methods on the two datasets. Min-max normalisation means that the minimum value is 
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mapped to 0, the maximum value is mapped to 1, and the other values are linearly 
rescaled accordingly. In this way, the various scatter plots, which correspond to methods 
with different dynamic ranges for the semantic similarity values, can be more easily 
compared with each other. The curves are obtained from a nonlinear fitting using the 
model in equation (16). 

Figure 4 Scatter plots of the min-max normalised semantic similarity vs. the gene expression 
similarity on the Eisen and Spellman dataset. 1(a)–1(e) Eisen dataset; 2(a)–2(e) 
Spellman dataset. Five methods are compared: (a) Jiang’s method; (b) Resnik’s  
method; (c) Wang’s method; (d) Relevance method and (e) the Shortest Path  
method (see online version for colours) 
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Figure 4 Scatter plots of the min-max normalised semantic similarity vs. the gene expression 
similarity on the Eisen and Spellman dataset. 1(a)–1(e) Eisen dataset; 2(a)–2(e) 
Spellman dataset. Five methods are compared: (a) Jiang’s method; (b) Resnik’s  
method; (c) Wang’s method; (d) Relevance method and (e) the Shortest Path  
method (see online version for colours) (continued) 

 

Wang’s method and our SP method have similar performance with respect to the AUC 
score, the nonlinear correlation coefficient, and the RMSE scores, and they are much 
better than the other three methods. However, Wang’s method requires a long 
computation time. First, comparing equation (8) with equation (11), it can be seen that, to 
compute semantic similarity using Wang’s method, we need to compute the S-values of 
all ancestors of term A and term B in advance. In contrast, our SP method only requires 
the IC values of their common ancestors, the number of which is much smaller. Second, 
in equation (8), the S-values of term t to term A and term B are different. Therefore, the  
S-values of term t cannot be stored and reused, resulting in computational redundancy. 
On the other hand, the IC value of a term used in SP method is fixed, which can be stored 
and easily retrieved from a database. To support these claims, we report the time 
consumption (in sec) in Table 6 for the five methods on the example shown in Figure 2. It 
can be seen that the time consumption of Wang’s method is about 3 times that of SP 
method. 
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5 Conclusion 

In this paper, a new method for measuring the semantic similarity, namely the SP 
algorithm, is proposed. The SP algorithm depends on the substructure of GO associated 
with two terms and their MICA. The substructure contains more information than the IC 
values used in the node-based algorithm. In addition, the weights assigned to the 
substructure are more consistent than the previous edge-based methods. In general, the 
semantic similarity obtained by SP algorithm correlates better with PPI information and 
expression similarity than other node-based methods. Moreover, compared with another 
state-of-the art hybrid method, Wang’s method, the SP algorithm has the advantage of 
less computation time due to fewer variables. 
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