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Abstract. Classification problems, e.g., gene function prediction problem, are 
very important in bioinformatics. Previous work mainly focuses on the 
improvement of classification techniques used. With the emergence of Gene 
Ontology (GO), extra knowledge about the gene products can be extracted from 
GO. Such kind of knowledge reveals the relationship of the gene products and 
is helpful for solving the classification problems. In this paper, we propose a 
new method to integrate the knowledge from GO into classifiers. The results 
from the experiments demonstrate the efficacy of our new method. 
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1 Introduction 

In the post-genomics era with the availability of large-scale gene expression data, 
gene function prediction becomes an emergent task. Computational approaches with 
novel classification techniques have been used to address this problem [3]. Despite of 
the success achieved by them, the improvement for the classification accuracy 
remains limited, because they only deal with the data obtained from the biological 
experiments, which contains noise and missing values. If additional information can 
be referred to in the prediction process, the classification accuracy should be 
improved. Fortunately, the Gene Ontology (GO) [9] provides us with such kind of 
information, which has been tentatively used for the gene function prediction [6, 14]. 

GO characterizes the functional properties of gene products using standardized 
terms. Based on GO, the semantic similarities are defined to quantitatively measure 
the relationships between two GO terms/gene products. Several methods have been 
proposed for this purpose [8, 10, 11]. Compared with the expression data, the 
semantic similarity information is more reliable and reflects the true relationships 
between the terms/gene products.  

Several approaches have been proposed to make use of the semantic similarity 
information in the gene function prediction problems. Initially, researchers only used 
the semantic similarity to predict the functions for genes [7]. The problems is, because 
Gene Ontology is still under development, novel functions for some gene products 
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may be masked by their known functions if the classifier only relies on the current 
semantic similarity information. Later, some improved methods combining both the 
semantic similarity and the experimental data are proposed [6, 14]. The similarities 
based on the expression data and the semantic similarities are weighted and together 
form the final combined similarities. The likelihood of a gene g having a function 
represented by the term t is computed using the combined similarities. Term t with the 
largest likelihood will be assigned to g as its potential function. 

In this paper, we propose a novel method which integrates the semantic similarity 
information into the existing classification techniques. Specifically, in the training 
process, our new algorithm will learn a distance metric using the semantic similarity 
information. In the prediction process, classifiers can use the learned distance metric 
to predict functions for genes. The experimental results demonstrate that the learned 
distance metric can enhance the performance of the classifier. 

The rest of the paper is organized as follows. Section 2 provides some background 
knowledge about the global distance metric learning. Section 3 introduces our new 
algorithm. Section 4 reports the experimental results. Finally, Section 5 concludes the 
paper with a summary. 

2 Global Distance Metric Learning 

Intuitively, the distance metric learned from the training data would be more suitable 
than a generic distance metric for solving a specific problem. Global supervised 
distance metric learning aims to solve the following problem: given a set of pairwise 
constraints, to find a global distance metric that best satisfies these constraints. It has 
been shown that the learned distance metric can significantly enhance the classifier’s 
accuracy [4, 5]. 

Pairwise Constraint. can be represented by a similarity constraint set S and a 
dissimilarity constraint set D. Given a set of points {xk | k = 1,…, n}, (xi,  xj)∈S if xi 
and xj are in the same class; and (xi, xj)∈D if they are in the different classes, where i, 
j∈{1, ….., n}. Given the two sets S and D, how can we learn a distance metric that 
satisfies both kinds of constraints? An algorithm proposed by Xing et al. [12] solves 
this problem by minimizing the sum of distances between the samples in S: 
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A is a positive semi-definite matrix used by the Mahalanobis distance. To solve the 
problem formulated in Eq. (1), two solutions can be found in [12]. 

3 Distance Metric Learning with GO Information 

In this section, we describe a novel algorithm which integrates the semantic similarity 
information into the existing classification technique. Specifically, in the training 
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process, our algorithm learns a distance metric under the supervision of a semantic 
similarity matrix. In the prediction process, the learned distance metric is fed into the 
classifier to classify the testing samples. 

3.1 Distance Based on the Expression Data 

Given a set of gene products {gk | k = 1,…, n}, the distance between a pair of gene 
products gi and gj (i, j∈{1, ….., n}) is defined by the Mahalanobis distance: 

( , ) ( ) ( )T
exp i j i j A i j i jd g g g g g g A g g= − = − −‖ ‖  (2) 

A symmetric distance matrix Dexp can be formed consequently: 

{ ( , )} { ,, ..., },exp exp n ni jD d g g i j i n× ∈=  (3) 

3.2 Semantic Similarity over Terms 

Wang’s method [10] is adopted here to compute the semantic similarity between 
terms. In [10], a GO term A is represented as DAGA = (A, TA, EA), where TA is a set of 
terms consisting of A and all its ancestors, and EA is a set of edges in GO that connects 
the terms in TA. The contribution S of term t in TA to term A is 
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where w is a weight factor for the edge in EA connecting t and t'. Given two terms A 
and B, the semantic similarity between them is defined as 
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3.3 Semantic (Dis)similarity over Gene Products 

There are several approaches proposed for measuring the semantic similarity for gene 
products. In this paper, we propose another method to define the semantic similarity 
over genes. Specifically, the semantic similarity between g1 and g2 is defined as: 

1 2( , ) max ( , ' )i jsim g g sim t t= , if l1 = l2 

1 2( , ) min ( , ' )i jsim g g sim t t= ,  if l1 ≠ l2 
(6) 

where l1, l2 are the class labels for g1 and g2 In the training set. Using the semantic 
similarities computed using Eq. (6), a semantic similarity matrix Ssem can be formed: 

{1,{ ( ..., }, )} , ,nse i nm jgS sim ng i j×= ∈  (7) 

Because the semantic similarity value has been normalized into [0, 1], a semantic 
distance matrix Dsem can be obtained using Eq. (8). 

sem n n semID S×= −  (8) 
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3.4 Algorithm 

The algorithm is shown in Fig. 1. The optimization problem in step 4 is defined as 
2min ( ( , ) ( , ))exp sem
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Training process 

1. Calculate the semantic similarities for genes in the training set using Wang’s 
method and form the semantic similarity matrix Ssem using Eqs. (6) and (7);  

2. Calculate the semantic distance matrix  Dsem using Eq. (8); 
3. Calculate the distance matrix Dexp for the gene products in the training set using 

Eqs. (2) and (3); 
4. Find a distance metric ||·||A that minimizes the difference between Dexp and Dsem; 

Prediction process 

5. Classify the target genes using a knn classifier and the learned distance metric. 

Fig. 1. Distance metric learning with the semantic similarity information 

The convex optimization problem in Eq. (9) is solved using the gradient descent 
method to obtain a full matrix A. We define the cost function in Eq. (10): 
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The gradient of the function h(A) is  
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The rationale behind the algorithm is that, if the functions of the training samples 
have been known, the semantic similarities obtained using Eq. (6) can correctly 
reflect the relationships between gene products. If a global distance metric that 
suitably maps the expression data to Dsem is learned in the training process, it will 
alleviate the effect of noise in the expression data. Under this assumption, when using 
the learned distance metric in the prediction process, the classification accuracy 
should be improved. 

4 Experiments and Results 

To evaluate the performance of our algorithm, it is tested on two datasets. In the 
experiments, we compared the classification accuracies of the standard knn classifier 
and the improved knn classifier using the learned distance metric.  



 Improving Classification Accuracy Using Gene Ontology Information 175 

 

4.1 Data Description and Experimental Setup 

The first data set used in the experiments is the ecoli dataset from the UCI repository 
[1]. Annotations for gene products in the dataset were retrieved from the Uniprot 
database. After removing obsoleted genes in the Uniprot database, there are 309 genes 
left. In the experiments, only 5 classes (cp, im, pp, imU, and om) in which the 
numbers of instances are larger than 2 are used. 

The second data set used is Brown’s gene expression dataset (http://genome-
ww.stanford.edu/clustering/Figure2.txt) [2]. The class labels can be obtained at 
http://compbio.soe.ucsc.edu/genex/targetMIPS.rdb. The genes are classified into 6 
classes according to the MIPS function categories. Those genes that were not assigned 
to any of these classes and with multiple labels were eliminated. Annotations were 
retrieved from the SGD database. Those obsoleted genes in the SGD database were 
also removed. In the end, there are 224 genes left. 

The semantic similarities for gene products in both datasets are computed using the 
GOSemSim package [13]. A 4-fold cross validation is performed on both datasets. We 
repeat the cross validation 20 times on each dataset and record the average 
classification accuracy for each k value. 

4.2 Experimental Results 

Fig. 2(a) shows the classification accuracies of the standard knn classifier and the 
improved knn classifier using the learned distance metric on the ecoli dataset. In this 
figure, the knn classifier using the learned distance metric outperforms the standard 
knn classifier except for the case of k = 3. When k is 11, the improved knn classifier 
outperforms the standard knn classifier by 1%.  Fig. 2(b) shows the results of  
the experiments performed on the Brown’s gene expression dataset. Again, the 
performance of the knn classifier using the learned distance metric is better than  
the standard knn classifier except for the case of k = 13. When k is 1, 5, and 9, the 
performance is improved by 0.6%. 
 

 
(a) (b) 

Fig. 2. Classification accuracies for the standard knn classifier and the improved knn classifier 
using the learned distance metric. (a) Classification accuracies on ecoli dataset; (b)
Classification accuracies on Brown’s gene expression dataset. 
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5 Conclusion 

In this paper, we proposed a new method which utilizes the knowledge extracted from 
Gene Ontology to improve the gene function prediction accuracy by using the 
distance learning technique. In the training process, our method learns a global 
distance metric for the expression data under the supervision of the semantic 
similarity derived from GO. In the testing stage, the learned distance metric is used by 
the classifier to make decision. From the experiments, it can be seen that our method 
successfully improves the performance of the knn classifier, and provides a new way 
of integrating the GO knowledge into the classification problems in bioinformatics. 
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