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ABSTRACT

Motivation: RNA 3D motifs are recurrent substructures in an RNA
subunit and are building blocks of the RNA architecture. They play
an important role in binding proteins and consolidating RNA tertiary
structures. RNA 3D motif searching consists of two steps: candidate
generation and candidate filtering. We proposed a novel method,
known as Feature-based RNA Motif Filtering (FRMF), for identifying
motifs based on a set of moment invariants and the Earth Mover’s
Distance in the second step.
Results: A positive set of RNA motifs belonging to six characteristic
types, with eight subtypes occurring in HM 50S, is compiled by
us. The proposed method is validated on this representative set.
FRMF successfully finds most of the positive fragments. Besides
the proposed new method and the compiled positive set, we also
recognize some new motifs, in particular a π-turn and some non-
standard A-minor motifs are found. These newly discovered motifs
provide more information about RNA structure conformation.
Availability: Matlab code can be downloaded from
www.cs.cityu.edu.hk/~yingshen/FRMF.html
Contact: cshswong@cityu.edu.hk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In recent years, non-protein-coding RNAs (ncRNAs), in particular
long ncRNAs (>200 nt), are receiving more and more attention
(Mercer et al., 2009; Soldà et al., 2009). Increasing evidences
indicate that these RNAs have important regulatory functions, e.g.
the regulation of epigenetic processes related to cell differentiation,
etc. (Amaral and Mattick, 2008; Mattick et al., 2009; Pang et al.,
2009).

Starting from a nucleotide sequence, RNA will experience a
process of hierarchical folding and finally form a unique compact
3D structure to perform certain functions. In the final 3D structure,
some nucleotides that are originally remote from each other at
the sequence level may be connected by chemical bonds or
form tertiary interactions. Those nucleotides undergoing tertiary
interactions, together with some related nucleotides, often compose
special substructures that occur recurrently in an RNA subunit.
These recurrent substructures are called RNA 3D motifs. RNA 3D
motifs have various functions, e.g. interacting with proteins and
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consolidating the RNA tertiary structures (Apostolico et al., 2009;
Francois et al., 2005). By characterizing these motifs, researchers
can find a way to explore the possible functions of ncRNAs.

RNA 3D motifs are also important for predicting the possible
tertiary structures for an RNA sequence, since they are the building
blocks of RNA 3D structure. Understanding RNA structures relies
on the ability to identify the component motifs (Laing and Schlick,
2010). Many fragment assembly approaches for RNA tertiary
structure prediction, e.g. MC-Fold/MC-Sym (Parisien and Major,
2008), are based on the reconstructed base pairs and/or motifs.
Despite the efforts made in tRNA and medium size RNA structure
prediction (Jonikas et al., 2009), to our knowledge, no significant
improvement has been reported in long ncRNAs tertiary structure
prediction. If suitable rules can be inferred from RNA 3D motif
composition, methods for RNA tertiary structure prediction will
be expected to benefit from these rules and may achieve higher
accuracy.

The goal of RNA motif searching is to identify the complete set
of motifs in an RNA subunit, which have similar structures to the
query motif. Query motifs are often observed recurrent substructures
reported in previous publications. In early studies, RNA motif
searching algorithms are based on the secondary structure of RNA
(Reeder et al., 2007; Yang et al., 2003). These algorithms first
produce 2D symbolic representations of the RNA 3D structures.
Then, recurrent motifs are manually determined using the 2D
representations generated in the first step. Some methods that
identify RNA motifs from sequences were also developed. Yao et al.
(2006) and Rabani et al. (2008) find local motifs from sequences
based on a probabilistic model, and Michal et al. (2007) finds
motifs from homologous sequences based on Genetic Programming.
However, motifs discovered by the above approaches are actually
2D motifs like hairpins and contiguous base pairs, and 3D motifs
based on tertiary interactions are quite difficult to discover through
these methods. In order to find RNA 3D motifs, new methods are
proposed and can be categorized into two types. The first type of
methods is based on geometrical matching (Apostolico et al., 2009;
Duarte et al., 2003; Gendron et al., 2001; Huang et al., 2005; Sarver
et al., 2008; Sargsyan and Lim, 2010; Wadley and Pyle, 2004).
These methods use the root mean square deviation (RMSD) and
other distance metrics to calculate the distance between the two
RNA fragments. Among these geometry-based approaches, FR3D
(Sarver et al., 2008) is an effective method that is mainly used for
RNA 3D motif searching. When comparing two structures, it first
superimposes the candidate and the query motif in 3D space, and
then uses the fitting error and the orientation error to measure the
distance between the two fragments. On the other hand, Apostolico
et al. (2009) and Sargsyan and Lim (2010) use the cosine measure to
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measure the discrepancy of two fragments based on their distance
histograms. The second type of method is based on graph theory
(Harrison et al., 2003; Lescoute et al., 2005; Major et al., 1991;
Zhong et al., 2010). RNA 3D structures stored in the database [e.g.
PDB (Berman et al., 2000)] only retain the coordinates of discrete
atoms. Graph-based methods first reduce the RNA 3D structures to
graphs, and then apply subgraph isomorphism to search for motifs
in the reduced graphs. When constructing the graphs, nucleotides
are regarded as nodes, and edges are added between the two nodes
if the corresponding nucleotides are considered to have undergone
interactions according to certain rules. Still adopting a graph-based
representation, the approach described in Djelloul and Denise (2008)
focuses on finding novel recurrent substructures instead of similar
substructures based on a query motif.

Although many approaches have been developed for RNA 3D
motif searching, the discovery of all positive motifs for known RNA
subunits is still a long way off. The RNA motif searching process
can be divided into two steps: candidate generation and candidate
filtering. In this article, we propose a new approach, which is referred
to as Feature-based RNA Motif Filtering (FRMF), to be used in the
second step for identifying RNA 3D motifs from the candidates.
Our method is based on the geometric features of 3D structures,
specifically the moment invariants and the Earth Mover’s Distance
(EMD), for structure comparison. Moment invariants receive a lot
of studies in 2D image analysis and have been extended to 3D
space (Flusser et al., 2010; Mamistvalov, 1998). But it is only in
recent years that moment invariants are introduced into structural
bioinformatics (Sommer et al., 2007). EMD is widely used in pattern
recognition to compute feature histogram distance. Compared with
other distance metrics, it has the advantage of supporting adaptive
binning and partial match (Yu and Herman, 2005).

Through our experiments, we discover a number of new motifs,
in particular a new π-turn and non-standard instances of type I
A-minor motif. These newly observed motifs are essential for
binding proteins and consolidating the RNA tertiary structure. They
also lend evidence to the possible variations of π-turn and type I
A-minor motif, and provide an insight into RNA 3D structures
and functions. We also collect a set of positive RNA 3D motifs
of different classes. These motifs are either published in previous
papers or discovered by us. We anticipate that this positive set could
be useful for the development of further approaches in RNA 3D
motif searching.

The rest of this article is organized as follows. Sections 2.1 and 2.2
introduce RNA 3D motifs and the ribosomal RNA subunit HM 50S.
Sections 2.3 and 2.4 provide some preliminary knowledge about
moment invariants and EMD. In Sections 2.5 and 2.6, FRMF, an
approach proposed by us for identifying RNA 3D motifs, will be
presented. Section 3 reports our experimental results. Discussion
and analysis on the newly discovered motifs is given in Section 4,
and we conclude our article in Section 5.

2 MATERIALS AND METHODS

2.1 Classification of RNA 3D motifs
RNA motifs are recurrent substructures occurring independently in RNA
subunits. There are many types of RNA motifs, e.g. hairpin loop, sarcin/ricin
loop, π-turn and kink-turn, etc. Some of them (e.g. kink-turn) can be further
categorized into the local type and the composite type. Local kink-turn is
composed of two consecutive strands, one of which is the characteristic

Fig. 1. (a) Sarcin/ricin loop; (b) local kink-turn; (c) composite kink-turn;
(d) π-turn; (e) ribose zipper. Dashed lines represent hydrogen bonds.

Fig. 2. (a) Standard tetraloop; (b) tetraloop with deletion; (c) tetraloop with
insertion.

strand (Fig. 1b). Composite kink-turn consists of three strands, but it has
a similar characteristic strand to that of the local kink-turn (Fig. 1c). Some
types of RNA motifs are called RNA tertiary interaction, because they are
formed by several remote nucleotides that have interactions in 3D space.
There are seven kinds of tertiary interactions according to the SCOR database
(Klosterman et al., 2002). Because there are too many types of motifs, we
select some representative types for identification and they are introduced
respectively here.

Tetraloop: a tetraloop is a hairpin loop that consists of four consecutive
residues and terminates a single RNA helix (Correll and Swinger, 2003;
Jaeger et al., 1994). There are three types of tetraloops (Hsiao et al., 2006):
standard, with deletion and with insertion (Fig. 2). Standard tetraloop is also
called GNRA tetraloop, because GNRA (N is any nucleotide in A, U, G, C;
R is A or G) is one of the most common patterns appearing in the standard
tetraloops.

Sarcin/ricin loop: the complete sarcin/ricin loop contains nine nucleotides,
among which there are five non-canonical base pairs called the core of the
sarcin/ricin loop. Sarcin/ricin loop joins two segments of helices. A complete
sarcin/ricin loop structure is shown in Figure 1a.

Kink-turn: the kink-turn motif is a two-stranded, helix-internal loop-
helix substructure comprising ∼15 nt (Klein et al., 2001). The internal loop
connects two segments of helices, the orientation of which differs by ∼120◦.
Kink-turn motifs can be further categorized as local kink-turns (consisting
of two strands, see Fig. 1b) and composite kink-turns (consisting of three
strands, see Fig. 1c).

π-turn: the π-turn consists of five consecutive nucleotides with ∼120◦
change in backbone direction (Fig. 1d) resulting in a pinched strand. On
the 5′-side, two consecutive nucleotides stack on a helix (the right two
nucleotides in Fig. 1d). On the 3′-side, two discontiguous nucleotides are
arranged side-by-side (the middle two nucleotides in Fig. 1d). The nucleotide
between them (the left nucleotide in Fig. 1d) extends out to form tertiary
interactions with RNAs, proteins or both. π-turn is similar to the kink-turn in
structure, but has distinct conformational features (Wadley and Pyle, 2004).

Ribose zipper: ribose zipper (Cate et al., 1996) is a tertiary interaction
formed by consecutive hydrogen bonds between the backbone ribose
2′-hydroxyls and bases from two distinct strands (Fig. 1e).

A-minor motif : A-minor motif involves the insertion of adenosines
(Fig. 3a) into the minor grooves of RNA helices (Nissen et al., 2001). It
has four versions based on the positions of the O2′ and N3 atoms of the
adenosines inserted. In type I (Fig. 3b), both the O2′ and the N3 atoms of
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Fig. 3. (a) Adenosine; (b) A-minor motif, type I; (c) A-minor motif, type II;
(d) A-minor motif, type III; (e) A-minor motif, type 0. Dashed lines represent
hydrogen bonds connecting the inserted A and the Watson–Crick base pairs.

Table 1. Frequencies of different types of motifs appearing in HM 50S

Motif Frequency

Tetraloop, standard 19
Tetraloop, with deletion 10
Sarcin/ricin loop, core 11
Kink-turn, local 6
Kink-turn (local and composite) 8
π-turn 7
Ribose zipper 39
A-minor motif, type I 60

the inserted adenosine are inside the minor groove of the helix. The number
of hydrogen bonds formed for this type is the maximum among all the four
types. Therefore, type I corresponds to the strongest interaction compared
with the other three types. In type II (Fig. 3c), the O2′ of the inserted
adenosine is outside the near strand O2′ of the Watson–Crick base pair,
whereas the N3 is inside. In type III (Fig. 3d), both O2′ and N3 of the
inserted adenosine are outside the near strand O2′. The fourth version is type
0 (Fig. 3e), in which the N3 of the inserted adenosine is outside the O2′ of
the nucleotide on the far strand.

2.2 Haloarcula marismortui 50S ribosomal subunit
We focus on the 50S ribosomal subunit of Haloarcula marismortui (PDB ID
1S72) in our experiments. Motifs in HM 50S have been studied in previous
publications, and we collect as many as possible the motifs discovered in HM
50S published in previous works in order to construct a positive set of motifs.
Specifically, standard tetraloops and tetraloops with deletion are collected
fromApostolico et al. (2009) and Sargsyan and Lim (2010); sarcin/ricin loops
and local kink-turns are collected from Sarver et al. (2008); composite kink-
turns are collected from Apostolico et al. (2009); π-turns are collected from
Wadley and Pyle (2004); A-minor motifs and ribose zippers are collected
from Xin et al. (2008). In addition to the published motifs, this positive
set also includes some motifs newly discovered by our proposed FRMF
approach. We use this set to validate the performance of different approaches
for identifying RNA 3D motifs. The frequencies of different types of motifs
appearing in HM 50S are listed in Table 1. The complete set of positive
motifs is provided in the Supplementary Material.

2.3 Moment invariants
The geometric moment with order p of a 3D structure is defined as follows:

mp1p2p3 =
∞∫

−∞

∞∫
−∞

∞∫
−∞

xp1 yp2 zp3 f (x,y,z)dxdydz (1)

where f (x,y,z) is the density function of the 3D structure and p=p1 +p2 +p3.
The central geometric moment is defined as:

µp1p2p3 =
∞∫

−∞

∞∫
−∞

∞∫
−∞

(x−xc)p1 (y−yc)p2 (z−zc)p3 f (x,y,z)dxdydz (2)

where xc =m100/m000, yc =m010/m000 and zc =m001/m000. (xc, yc, zc) is the
center of the 3D structure.

We use moment invariants to describe the characteristics of 3D
structures. Moment invariants are quantities insensitive to a particular set
of transformations, and they provide adequate discrimination power to
distinguish between structures belonging to different classes (Flusser et al.,
2010). We list three of these invariants below:

I1 = 1

2

√
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π
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√
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+18µ200µ
2
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2
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2
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2
110 −9µ200µ

2
101

−9µ020µ
2
110 −9µ020µ

2
011 −9µ002µ

2
101 −9µ002µ

2
011 −54µ110µ101µ011)

(5)

In general, structures in the same class have similar values for all three
moment invariants, while structures in different classes have significantly
different values for one or more moment invariants. Based on these three
second-order moment invariants, we can construct a feature vector v=
[I1 I2 I3] for a 3D structure. Given two 3D structures S and S′, two feature
vectors v=[I1 I2 I3] and v′ =[I ′

1 I ′
2 I ′

3] can be constructed using Equations
(3), (4) and (5). The discrepancy between two structures S and S′ can then
be measured using Equation (6) below.

r(v,v′)=
(

I1 −I ′
1

I1

)2

+
(

I2 −I ′
2

I2

)2

+
(

I3 −I ′
3

I3

)2

(6)

From Equation (6), it can be seen that, in our approach, the final discrepancy
is defined as the sum of the relative distances from three moment invariants.
The reason to choose the relative distance instead of the squared Euclidian
distance is that the ranges of the three moment invariants are quite different,
thus the relative distance can reduce the effect of different value ranges on
the three invariants.

2.4 EMD
The EMD is a distance measure between two probability distributions
(Levina and Bickel, 2001; Rubner et al., 1998). Currently, EMD is widely
used in computing feature histogram distance, because it judiciously extends
a discrepancy measure between individual features to a corresponding
measure between histograms, and also supports adaptive binning (Yu and
Herman, 2005). In this work, we use EMD to measure the difference
between the corresponding interatomic distance histograms of two RNA
substructures. Specifically, a distance histogram summarizes the distribution
of the interatomic distances in a substructure, which corresponds to a
distinctive and robust descriptor for RNA motifs (Apostolico et al., 2009)
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(b)

(c)

(a)

Fig. 4. (a) S1 structure of a standard tetraloop; (b) distance matrix for atoms
in (a); (c) distance histogram for the distance matrix in (b).

and is easy to compute. Given an interatomic distance matrix (Fig. 4b), a
distance histogram can be constructed by assigning the matrix entries into
a discrete number of bins and counting the frequencies of values falling
into the same bin (Fig. 4c). If two distance histograms P and Q both
contain m bins, they can be represented as {(p1,wp1),...,(pm,wpm)} and
{(q1,wq1),...,(qm,wqm)}, where pi and qj are the centers of bin i and bin
j(1≤ i≤m,1≤ j≤m) respectively, and wpi, wqj are the corresponding weights
of these bins (in practice, they are the frequencies of distance values falling
into these bins) for the two histograms. Given a distance measure between
pi and qj , which is represented by a matrix D = [dij], the distance between P
and Q can be computed using the following equation.

dEMD(P,Q)=min

m∑
i,j=1

fijdij

m∑
i,j=1

fij

s.t.
m∑

j=1

fij ≤wpi,

m∑
i=1

fij ≤wqj

m∑
i,j=1

fij =min

⎛
⎝ m∑

i=1

wpi,

m∑
j=1

wqj

⎞
⎠

fij ≥0,1≤ i≤m,1≤ j≤m

(7)

2.5 Representation of an RNA 3D motif
Before identifying the RNA motifs, an important step is to find their
representative structures. That is because, even if two motifs belong to
the same category, the positions of some of the bases and ribose sugars
can be quite different. Representative structures can characterize the similar
motif features in the same class to a significant extent. In previous works,
researchers adopt different representative structures for RNA 3D motifs.
For example, FR3D uses the centers of all bases comprising the motif.
In Apostolico et al. (2009) and Sargsyan and Lim (2010), the authors use
the phosphates and ribose sugars as the representative structures of the
motifs. On the other hand, in our approach, we divide a nucleotide into
three components: the phosphate part (part A, containing P, OP1, OP2, C5′
and O5′), ribose sugar (part B, containing C4′, O4′, C3′, O3′, C2′, O2′ and
C1′) and the base (part C, containing the other atoms of the residue) (Fig. 5a).
We extract three substructures from the original 3D structure of a motif as its
representation. Take a standard tetraloop as an example: the first substructure
S1 contains the complete part A of motif nucleotides (Fig. 5b), and the second
substructure S2 contains all the centers of part C of the motif (Fig. 5c). The
last substructure S3 is the motif itself (Fig. 5d).

Fig. 5. (a) RNA guanine; (b) S1 structure; (c) S2 structure (only contains
the center points of the four bases); (d) S3 structure.

2.6 Feature-based RNA 3D motif filtering
RNA 3D motif searching can be divided into two steps: candidate generation
and candidate filtering. Currently, we only focus on candidate filtering. We
now introduce the details of FRMF for filtering candidates.

Given a query motif, FRMF first calculates three feature vectors
v1 =[I11 I12 I13], v2 =[I21 I22 I23] and v3 =[I31 I32 I33] using
Equations (3), (4) and (5) for the three substructures S1, S2, S3 extracted
from the query motif following the method presented in Section 2.5. Given
a candidate, FRMF calculates another three feature vectors v′

1, v′
2 and v′

3
for the three substructures S′

1, S′
2, S′

3 extracted from the candidate. Three
discrepancy values disc1 =r (v1, v′

1), disc2 =r (v2,v′
2), disc3 =r (v3, v′

3) are
then calculated using Equation (6).

Next, FRMF will compute the EMD value between S1 and S′
1 based

on their distance histograms. To obtain the distance histograms, FRMF
first constructs two Euclidean distance matrices for atoms in S1 and S′

1,
respectively (Fig. 4a and b). The distance values in the matrices are assigned
to several bins as shown in Figure 4c and two histograms h1 and h′

1 are
constructed for S1 and S′

1, respectively. The distance dEMD between h1 and
h′

1 is calculated using Equation (7).
After the previous steps, four discrepancy values: disc1, disc2, disc3 and

dEMD are obtained. Three thresholds t1, t2, t3 are set for (disc1, disc2, disc3),
respectively. If the values of disc1, disc2 and disc3 are all smaller than the
corresponding thresholds, the candidate is regarded as belonging to the same
class as that of the query motif. In the end, all the positive candidates are
ranked according to their dEMD values.

3 RESULTS
In the following subsections, we present the results on searching
different types of motifs. We also list the results obtained from FR3D
and the method used in Apostolico et al. (2009) for comparison.
RNA fragments are represented in the form of ‘sequence_ID
chain_ID’. For example, a standard tetraloop, G2412 A2413 A2414
A2415 0000, consists of a guanine and three adenines. Their
sequence IDs are 2412, 2413, 2414 and 2415, respectively. All
four nucleotides are located on chain 0, and therefore, there are
four zeros at the end. FR3D candidate generation module is used
to generate possible candidates. There will be n(n−1)...(n−m+1)
(i.e. approximately nm) candidates for a search (m is the size of the
query motif and n is the size of the RNA structure). Sarver et al.
(2008) has shown that possible candidates should satisfy a screening
criterion, which can be validated rapidly. In the candidate generation
step, the screening algorithm of FR3D can reduce the original size of
the candidate set to a few hundred thousand or less. Then the three
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approaches are evaluated on the reduced candidate set to identify
motifs.

The thresholds for parameters used by FR3D and FRMF are listed
in Table 2 (more details about settings are shown in Supplementary
Figs S1–S8). Apostolico et al. (2009) uses RMSD and the cosine
measure to filter candidates. For this method, the same thresholds
as in the original paper are adopted for searching tetraloops, kink-
turns, π-turns and sarcin/ricin loops. When searching ribose zippers
and A-minor motifs, the threshold for the cosine measure is 0.95
(RMSD cannot be used when searching motifs containing more
than two strands). The outputs of the three algorithms are listed in
Supplementary Tables S1–S6. Results highlighted in yellow indicate
positive motifs, while the negative instances are not highlighted. The
first instance in each table is used as the query motif.

In order to assess the accuracy of FRMF, FR3D and the method
in Apostolico et al. (2009) on searching different motifs, precision–
recall (PR) curves are plotted. For the given query motif, the
three approaches generate their ranked candidate lists using their
respective measures [i.e. discrepancy in FR3D, dEMD value in
FRMF and the cosine measure in Apostolico et al. (2009)]. The
candidates are classified as positive instances if their distances
are smaller than a threshold. The others are classified as negative

Table 2. Thresholds for motif filtering

Motif Guaranteed Relaxed t1 t2 t3
cutoff cutoff

Tetraloop, standard 0.5 0.5 0.92 2.53 1.24
Tetraloop, with deletion 0.5 0.5 0.67 0.78 1.07
Sarcin/ricin loop, core 0.4 0.4 1.20 1.02 1.54
Kink-turn, local 0.5 0.5 0.82 1.99 0.55
Kink-turn (composite and local) 0.95 0.95 0.70 6.14 2.33
π-turn 0.95 0.95 0.59 1.47 1.18
Ribose zipper 0.5 0.5 0.70 0.99 0.75
A-minor motif, type I 0.5 0.5 Infinity 1.02 1.40

Guaranteed cutoff and relaxed cutoff are parameters used by FR3D. t1, t2, and t3 are
parameters used by FRMF.

instances. For a certain threshold, precision and recall can be
computed using Equations (8) and (9) below. By adjusting the
threshold on the ranked list, precision/recall pairs are computed and
shown as a point in the PR space. A PR curve can be obtained by
connecting these points (Fig. 6).

Precision= TruePositive

TruePositive+FalsePositive
(8)

Recall= TruePositive

TruePositive+FalseNegative
(9)

Area under the PR curve (AUC-PR) is computed for each curve
using the approach in Davis and Goadrich (2006). A larger AUC-PR
value indicates a better performance.

3.1 Tetraloop
There are three subtypes of tetraloops: standard, with deletion and
with insertion. Because the number of insertion cases is too small,
they are not considered in the experiments. We construct two lists
of the standard tetraloops and tetraloops with deletion, respectively,
for identification. There are 19 instances of standard tetraloop and
10 instances of tetraloop with deletion. Search results are listed in
Supplementary Tables 1 and 2. The first instances in the two tables
are used as the query motifs. The parameters of FR3D used for
searching tetraloops are shown in Supplementary Figures 1 and 2.
PR curves for the results based on the three approaches are shown
in Figure 6a and b. The corresponding AUC-PR values are listed in
Table 3.

When searching the standard tetraloops, all the three methods find
all the 19 standard tetraloops. However, there are four false positives
in the results of FRMF and Apostolico et al. (2009) and one false
positive in the result of FR3D. FR3D has the largest AUC-PR value
of 0.996. FRMF and Apostolico et al. (2009) have similar AUC-PR
values.

When searching the tetraloops with deletion, all the three methods
have some difficulty to discriminate the deletion cases from the
standard ones. Compared with the other two methods, FRMF has
the largest AUC-PR value of 0.588, while FR3D has the smallest
AUC-PR value (only 0.316).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. PR curves for the three methods on searching eight subtypes of RNA motifs. (a) Standard tetraloop; (b) tetraloop with deletion; (c) core of sarcin/ricin
loop; (d) local kink-turn; (e) (composite and local) kink-turn; (f ) π-turn; (g) ribose zipper; (h) type I A-minor motif.
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Table 3. AUC-PR values of FRMF, FR3D and the method proposed in
Apostolico et al. (2009) for searching different motifs

Motif FRMF FR3D Apostolico et al. (2009)

Tetraloop, standard 0.970 0.996 0.973
Tetraloop, with deletion 0.588 0.316 0.330
Sarcin/ricin loop, core 0.985 1 0.864
Kink-turn, local 1 0.988 0.680
Kink-turn (composite and local) 0.840 0.944 0.840
π-turn 0.929 0.733 0.772
Ribose zipper 0.884 0.808 0.617
A-minor motif, type I 0.528 0.898 0.129

3.2 Sarcin/ricin loop
In HM 50S, there are 11 core of sarcin/ricin loops. Search results
of FRMF, FR3D and Apostolico et al. (2009) are shown in
Supplementary Table S3. FRMF and FR3D both find all 11 positive
motifs, but there are two false positives in the FRMF result.
Apostolico et al. (2009) only finds nine true positives with two false
negatives. PR curves for the three methods are shown in Figure 6c.
TheAUC-PR values are listed in Table 3. FR3D has the largestAUC-
PR value 1, and Apostolico et al. (2009) has the smallest AUC-PR
value of 0.864.

3.3 Kink-turn
There are six local kink-turn motifs appearing in HM 50S.According
to Supplementary Table S4, FRMF, FR3D and Apostolico et al.
(2009) find all six local kink-turn motifs. There is a false positive
appearing in the result of FR3D and six false positives in the result of
Apostolico et al. (2009). FRMF has the largest AUC-PR value 1 and
Apostolico et al. (2009) has the smallest AUC-PR value of 0.680.

Composite kink-turn motif consists of three distinct strands.
Different from the local kink-turn, the characteristic strand of the
composite kink-turn is coupled with the two strands and forms two
helices. Composite kink-turns cannot be completely found using
the local motifs, because there are differences in the complementary
strands. To search these composite kink-turns, only the characteristic
strand of a local kink-turn is used as the query motif. All kink-
turns, including local and composite kink-turns, should be returned
as positive instances in the results.

There are eight kink-turns in HM 50S. Supplementary Table S5
shows that FR3D recognizes seven of them with one false negative.
FRMF recognizes six positives with one false positive and two false
negatives. Apostolico et al. (2009) recognizes six of them with two
false negatives. FR3D has the largestAUC-PR value of 0.944. FRMF
and Apostolico et al. (2009) have the same AUC-PR value of 0.84.

3.4 π -turn
In HM 50S, there are six previously discovered π-turns (Apostolico
et al., 2009; Wadley and Pyle, 2004). From the experiments, a new
π-turn ‘G269 U270 C271 A272 G273 00000’ was identified by
FRMF. Therefore, there are seven positive π-turns. Search results
are shown in Supplementary Table S6 and PR curves are shown in
Fig. 6f. FRMF successfully finds six of them with one false negative.
Apostolico et al. (2009) also finds six π-turns but with one false
positive. FR3D identifies five of them with two false negatives.

FRMF has the largest AUC-PR value of 0.929, while FR3D has
the smallest AUC-PR value of 0.733.

3.5 Ribose zipper
The ribose zipper motif is composed of four nucleotides. The query
motif used for searching ribose zipper consists of A160, A161, C769
and C770 on chain 0. PR curves for the three methods are shown
in Figure 6g. The AUC-PR values for the three methods are listed
in Table 3. According to the results, FRMF has the largest AUC-
PR value of 0.884, while Apostolico et al. (2009) has the smallest
AUC-PR value of 0.617.

3.6 A-minor motif
A-minor motifs consist of four types: type I, type II, type III and
type 0. Because type I A-minor motif is the most common subtype
appearing in RNAsubunits, we compile an independent list for type I
A-minor motifs following the criteria defined in Xin et al. (2008).

The query motif used for searching type I A-minor motif is ‘A521
C637 G1364 000’. PR curves for the three methods are shown in
Figure 6h. The corresponding AUC-PR values are listed in Table 3.
In this experiment, FR3D has the largest AUC-PR value of 0.898.
Apostolico et al. (2009) has the smallestAUC-PR value (only 0.129).
On the other hand, we observe that FRMF is capable of discovering
non-standard type I A-minor motifs. There are 22 non-standard
type I A-minor motifs discovered that can help researchers to better
understand various RNA motif structures.

We have further compared FRMF and FR3D with RNAMotifScan
(Zhong et al., 2010). In general, this approach is quite different
from FRMF and FR3D due to its adoption of a graph representation
for the RNA motif, and its requirement of the availability of the
secondary structure of the motif. We performed the comparison
using the local kink-turns and the core of sarcin/ricin loops, based on
which FRMF and FR3D attain the best search result, respectively.
These motifs were also the focus of the studies in Zhong et al.
(2010). For local kink-turns, the AUC-PR value of RNAMotifScan
is 1 (all six positive instances were found with no false positives),
the same value as that of FRMF. For sarcin/ricin loops, the AUC-PR
value is 0.932 which is smaller than that of FRMF and FR3D.

Based on all the results, we can thus conclude that FRMF serves
as an important complementary approach to FR3D for searching
specific types of RNA motifs. In addition, FRMF is also capable of
finding new motifs, as we shall now discuss below.

4 DISCUSSION
When evaluating the three methods, we discover a number of new
motifs in the experiments. The first discovery is a new π-turn motif
G269-G273, the structure of which is shown in Figure 7a. The
RMSD between the backbone of this new motif and the standard
π-turn G1873-G1877 is 0.56 Å (The RMSD values of the other five
π-turns to G1873-G1877 range from 0.31 Å to 0.55 Å. Structure
alignments are shown in Fig. 7c). Beside this new π-turn, we also
discovered a motif, U866-G870, which has a structure similar to a
π-turn (Fig. 7b). U866-G870 also connects two helices and forms a
π shape. Compared with the standard π-turns, the first nucleotide on
the 5′-side (U866) is elongated and far away from the neighboring
nucleotide A867. The vacancy between U866 and A867 is occupied
by a remote nucleotide A776. The RMSD between the backbones of

2833

 at T
ongji U

niversity on June 14, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[14:21 27/9/2011 Bioinformatics-btr495.tex] Page: 2834 2828–2835

Y.Shen et al.

Fig. 7. (a) New π-turn G269-G273, chain 0 from HM 50S. The five
nucleotides (blue) are flanked by two helical strands (yellow); (b) the π-turn-
like motif U866-G870. Its five nucleotides are also flanked by two helices,
but a remote nucleotide (A776, in violet) is inserted that results in a possible
composite motif; (c) we aligned the backbones of seven positive π-turns and
motif U866–870 using the Jmol software. The new π-turn G269-G273 is
shown in yellow and the motif U866-G870 in pink.

Fig. 8. Non-standard type I A-minor motif. (a) A docks into an A–U base
pair; (b) A docks into a G–C base pair with its base rotated by 180◦; (c) A
docks into an A–U base pair with its base rotated by ∼60◦; (d) only N1 and
N3 of the inserted A form hydrogen bonds with the G–C base pair.

U866-G870 and G1873-G1877 is 0.6 Å (Fig. 7c). U866-G870 can be
regarded as a special case of π-turn because U866 is far away from
its standard position. It can also be regarded as a possible composite
π-turn if U866 is replaced by A776.

Another main discovery is the observation of some instances of
non-standard type I A-minor motif. Standard type I A-minor motif
consists of four hydrogen bonds (Fig. 3b). However, the examples
presented in Figure 8 consist of fewer hydrogen bonds than the
standard type, which indicates that these non-standard instances are
easier to form, but could be less stable than the standard ones. In
Figure 8a, an adenosine is inserted into an A–U pair instead of a G–C
pair. No hydrogen bond is formed between N3 of the inserted A and
the bases of the A–U pair. In Figure 8b and c, the bases of the inserted
A rotate by a certain angle (180◦ in Fig. 8b and ∼60◦ in Fig. 8c).
After rotation, N3 is far away from the Watson–Crick base pair and
fails to form a hydrogen bond. In Figure 8d, the ribose sugar and
phosphate of the inserted A are raised from their typical positions.
As a result, only N1 and N3 of the inserted A interact with the N2
and 2′-OH of G. Through the experiments, 38 standard instances
and 22 non-standard instances are observed. The large number of
non-standard cases indicates that type I A-minor motifs are not as
stable as previously supposed.

These newly observed motifs lend evidence to the possible
variations of π-turns and type I A-minor motifs. They also provide

additional information about the RNA tertiary structures and
functions.

5 CONCLUSION
In this article, we compile a set of positive RNA 3D motifs occurring
in HM 50S. This set includes six characteristic types and eight
subtypes of RNA 3D motifs. In addition to the published motifs, this
set also contains a new π-turn motif and 22 non-standard instances
of type I A-minor motifs discovered by us. FRMF, FR3D and the
method used in Apostolico et al. (2009) have been evaluated on this
positive set. The experimental results suggest that: (i) the method
used in Apostolico et al. (2009) does not achieve the best result
for any of the motifs; (ii) FRMF outperforms FR3D in the case
of searching tetraloops with deletion, local kink-turns, π-turns and
ribose zippers (AUC-PR value of FRMF is greater by 27, 1, 20 and
8 percentage points, respectively); (iii) FR3D outperforms FRMF in
the other cases. As a result, the advantage of FRMF lies in serving as
an important complementary approach to FR3D for particular types
of RNA motifs and its capability to find new motifs.

In this work, we have adopted the simplified criterion that, if
the distance between the candidate and the query motif is lower
than a threshold, the candidate is considered to be of the same type
as the query motif. While this notion may not necessarily be the
standard one used in motif searching, its adoption makes it easier to
compare the performance and rankings of different approaches. In
practice, since the measures disc1, disc2 and disc3 are decoupled,
we can set the corresponding thresholds t1, t2 and t3 separately by
selecting from a suitable transition region between a group of small
and more cohesive discrepancy values, and a group of comparatively
large and less cohesive values based on their overall distribution.
Another possible way is that the thresholds can be determined
through an adaptive example-based learning approach based on a
set of representative samples for different types of motifs.

In addition, parameters used by FRMF for searching different
motifs are not standardized. In future, we shall focus on normalizing
the discrepancies of the candidates from different types of motifs
to the same range to facilitate the selection of a suitable set of
parameters.

Finally, distance histograms, apart from its use in the candidate
filtering step, could also serve as a computationally efficient
approach during the candidate generation step to distinguish between
substructures with grossly different shapes. We shall investigate this
approach for candidate generation in our future work.
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