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Abstract 

 
Semantic similarity defined on Gene Ontology (GO) 

aims to provide the functional relationship between 
different biological processes, molecular functions, or 
cellular components. In this paper, a novel method, 
namely the Shortest Path (SP) algorithm, for 
measuring the semantic similarity on GO is proposed 
based on both the GO structure information and the 
term’s property. The proposed algorithm searches for 
the shortest path that connects two terms and uses the 
sum of weights on the shortest path to compute the 
semantic similarity for GO terms. A method for 
evaluating the nonlinear correlation between two 
variables is also introduced for validation. Extensive 
experiments conducted on two public gene expression 
datasets demonstrate the overall superiority of SP 
method over the other state-of-the-art methods 
evaluated. 
 
1. Introduction 
 

Gene Ontology (GO) [16] is a structured and 
controlled vocabulary, which characterizes the func-
tional properties of gene products using standardized 
terms. It is organized in the form of a Directed Acyclic 
Graph (DAG) and consists of three ontologies: 
biological process (BP), molecular function (MF), and 
cellular component (CC). GO data provide useful 
information (e.g. the quantitative relationships between 
gene products) for many applications. This information 
has been used to facilitate the existing clustering and 
classification algorithms [2, 9, 17] in bioinformatics.  

Semantic similarity is an important type of 
information derived from GO, the concept of which is 
originally used in the field of linguistics. When GO 
emerged, the previously defined methods in linguistics 
were used directly to measure the similarity over the 
terms in GO (e.g. Resnik’s method [11] and Lin’s 
method [7]). In 2003, Lord et al. [8] found that the 
semantic similarity calculated from annotations 
correlates well with the sequence similarity. After that, 

many new approaches have been proposed specifically 
for measuring the semantic similarity on Gene 
Ontology. Although new methods are proposed from 
time to time, they all have their own advantages and 
limitations and there is still a large scope for 
improvement.  

Semantic similarity can be defined for both the GO 
terms and gene products. The state-of-the-art methods 
for semantic similarity over the GO terms can be 
divided into three categories: edge-based, node-based, 
and a hybrid of the above two. For the edge-based 
approaches, they mainly consider the length of paths 
connecting the terms [1, 10]. For the node-based 
methods, they rely on the property of the terms which 
is represented using the concept derived from 
information theory [6, 7, 11, 12]. There are also hybrid 
methods that consider both the substructure of GO and 
the property of terms involved [18]. 

Based on the semantic similarity over terms, the 
semantic similarity for gene products can be defined as 
the maximum (‘Max’) [19], or average (‘Ave’) [17] 
value of the semantic similarity between their 
annotations. In addition to the ‘Max’ and ‘Ave’ 
methods, there are some more complicated methods 
proposed in [12, 18]. The details of these methods will 
be described in Section 2. 

To evaluate the previously defined methods, 
manually curated information and experimental data 
(e.g. protein-protein interaction (PPI) [20], pathway 
information [18], and gene expression data [20]) have 
been used. 

In this work, we propose a new hybrid method for 
measuring the semantic similarity over the terms. The 
new method is proposed based on the observation that, 
if two terms diverge at the higher levels of GO, the 
discrepancy between the functions represented by the 
terms should be larger, and vice versa. The new 
method aims to find a path connecting the terms and 
uses a metric defined on the path to reflect such change. 
In addition to the proposed method for semantic 
similarity measurement, we also introduce another 
validation approach to replace the previously used 
Pearson correlation coefficient. 
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The rest of the paper is organized as follows. 
Section 2 introduces some representative methods for 
semantic similarity computation over terms and genes. 
Section 3 presents the algorithm proposed by us for 
measuring the semantic similarity over terms. Section 
4 reports the experimental results. Finally, Section 5 
concludes the paper with a summary. 
 
2. Related work 
 

Although there have been a lot of methods to 
calculate the semantic similarity over terms and genes, 
a detailed review is beyond the scope of this paper. We 
will only review several representative ones frequently 
used in previous research. 

The methods for semantic similarity computation 
over terms generally fall into three categories: edge-
based, node-based, and a hybrid of the former two. 

Edge-based methods are intuitive and [10] [1] are 
two representative ones. Suppose t1 and t2 are two 
terms, and t is their lowest common ancestor. The 
distance method [10] counts the number of edges 
connecting the root with t, and edges connecting t with 
t1 and t2. The distance between t1 and t2 is calculated 
using Eq. (1) below and can be easily converted to a 
similarity value: 
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where len(x,y) is the length of the path between the 
node x and y, represented by the number of edges on 
the path. The distance method assumes that the weight 
of each edge is always 1. Another edge-based 
algorithm [1] uses the average length of all paths that 
go through the longest partial path shared by two 
nodes. The edges are weighted using the depth 
information. The disadvantage of the edge-based 
methods is that, the weights of the edges on the same 
level are assumed to be the same. However, the terms 
on the same level of Gene Ontology do not necessarily 
have the same specificity, and the edges connecting 
two terms do not necessarily have the same weights. 
The edge-based algorithms cannot solve this problem. 

Node-based methods focus mainly on the property 
of the terms, which is represented in the form of 
Information Content (IC). The IC value for a term t is 
defined as 

( ) log ( )IC t p t= −  (2) 
where p(t) is the probability of occurrence of the term t 
in a certain corpus (e.g. SGD database). All the node-
based methods are defined based on the IC value of the 
terms involved. 

Resnik’s method [11] is the first one used to 
measure the semantic similarity for GO terms. In this 

method, the semantic similarity for term t1 and t2 is 
defined as  

1 2
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( , ) max ( )Resnik t ancester t t
sim t t IC t

∈
=  (3) 

where t is the common ancestor of t1 and t2. Term t 
with the largest IC value is also called the most 
informative common ancestor (MICA). Because 
Resnik’s method only considers the information of the 
common ancestors, Lin’s [7] and Jiang’s [6] methods 
made some improvements by adding the IC values of 
the terms t1 and t2. The models used in Lin’s and 
Jiang’s methods are shown in Eq. (4) and (5) below 
respectively.  
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1 21 ( ( ) 2 ( ,( )) )Jiangsim IC t IC t IC t×= − + −  (5) 
where t is the MICA of  t1 and t2. 

From Eqs. (4) and (5), it can be seen that, when t1 is 
equal to t2, the semantic similarity of the two terms will 
correspond to the value of 1. However, because the 
terms on the top levels of GO are less specific than the 
leaf terms, the similarities between these terms and 
themselves should be smaller accordingly. To address 
this issue, Schlicker et al. [12] revised Lin’s method by 
incorporating a weight item as shown in Eq. (6) below, 
and referred to it as the Relevance method: 

1 2 1 2( , ) (1 (( , ) ))rel Linsim t t s tim t pt= × −  (6) 
In addition to the edge-based and node-based 

methods, there are also a number of hybrid methods 
proposed, e.g. Wang’s method [18]. In Wang’s 
method, a term t can be represented as a DAG 
structure. The semantic similarity of two terms is 
computed based on their DAG structures. Due to space 
limitation, further details will not be described here. 

After calculating the semantic similarity over the 
terms, the next step is to define a measure for the 
semantic similarity over gene products. The often used 
methods are the ‘Max’ [19] and ‘Ave’ [17] method. 
Given two gene products g1 and g2, the semantic 
similarities between their annotations form a semantic 
similarity matrix. For the ‘Max’ method, the semantic 
similarity is the maximum value in the matrix. For 
‘Ave’ method, it is the average value over the whole 
matrix. They can be computed using Eq. (8) and (9) 
below respectively.  
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where the terms t1 and t2 are annotations for g1 and g2. 
There are some more complicated methods defined for 
special structures, e.g. the method proposed by Wang 
et al. [18]. The evaluation of these methods shows that 
the similarity obtained using the ‘Max’ method is best 
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correlated with the gene expression data. However, the 
‘Max’ method is more sensitive to outliers, while the 
‘Ave’ method is relatively stable [20]. 

 
3. The Shortest Path algorithm 
 

As mentioned in Section 2, for edge-based methods, 
the weights of the edges conflict with the property of 
GO, and for node-based methods, only IC values of the 
two terms and their MICA are considered regardless of 
their position in GO. To address these drawbacks, we 
propose a new hybrid method, namely the Shortest 
Path (SP) algorithm, to measure the semantic 
similarity over terms in GO. 

It is intuitive that, given two terms tA and tB, if they 
diverge at a higher level (i.e. their MICA is nearer to 
the root), the difference between them should be larger; 
while if they diverge at a lower level, the difference 
should decrease. Under this assumption, the SP 
algorithm first assigns the weights to the terms in GO 
using the reciprocal of their IC values. Then the 
algorithm finds the path connecting the two terms and 
their MICA with the smallest sum of weights, and 
defines the sum of the weights on the path as the 
semantic distance for the two terms. This path is 
referred to as the shortest path. The rationale behind 
the algorithm is that, if MICA is near the root, the 
weights on the shortest path will increase, and vice 
versa. Therefore, the sum of the weights on the 
shortest path is consistent with the expected distance 
and can be used as its estimation. 

The Shortest Path algorithm can be described as 
follows. Given two terms tA and tB, the normalized 
distance between them is defined as: 
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where pathA (pathB) is the shortest path that connects 
the term tA (tB) with MICA; t1 and t2 are the terms 
located on pathA and pathB. Because MICA appears in 
both pathA and pathB, it is considered only once in Eq. 
(10). The function of arctan is to normalize the 
distance obtained by summing the weights of the terms 
on the shortest path to [0, 1]. After the normalization, 
the semantic similarity can be defined as 

( , ) 1 ( , )SP A B SP A Bsim t t dist t t= −  (11) 
Before using Dijkstra algorithm to find the shortest 

path between MICA and tA (tB), we first assign the 
weight of each edge as the weight of the more specific 
term among the two that it connects to. Dijkstra 
algorithm is then used to find the shortest path on the 
new edge-weighted graph. In Eq. (10), when the 
weights on pathA or pathB increase, i.e. MICA and its 

descendents on the shortest path become more general, 
the distance increases and the semantic similarity 
decreases. 

We show an example of computing the semantic 
similarity for the terms GO:0006793 and GO:0008219 
in Fig. 1. In the first step, the SP algorithm calculates 
the IC values for the terms on the graph using Eq. (2). 
In practice, though, several R packages (e.g. [4]) 
provide IC information for GO terms. Therefore, the 
IC values can be retrieved from these packages when 
needed. In this example, ICGO:0006793=3.5402 and 
ICGO:0008219=3.5285. In the second step, SP algorithm 
weights each term using the value of 1/IC, i.e. 
weightGO:0006793=1/3.5402= 0.2825, and weightGO:0008219 
=1/3.5285=0.2834. The weights of the other terms are 
computed in a similar way. In the third step, SP 
algorithm finds the MICA (GO:0009987) and the 
shortest path connecting MICA and the two terms. In 
this example, there is only one path starting from 
GO:0006793 (GO:0008219) to MICA. Therefore, it is 
marked as the shortest path and shown in Fig. 1 in red. 
The distance between GO:0006793 and GO:0008219 is 
the normalized sum of weights on the shortest path, i.e. 
dist=arctan(0.2825+0.7242+2.1179+0.2834)/(�/2)= 
0.8183. The semantic similarity sim is calculated as 1-
0.8183=0.1817. 

GO:0009987 
cellular process

GO:0044237
cellular metabolic 

process

GO:0008152 
metabolic process GO:0016265 

death

GO:0006793
phosphorus 

metabolic process

GO:0008219
cell death

GO:0008150 
biological_process

IC=0.4722
weight=2.1179

IC=1.3807
weight=0.7242

IC=3.5402
weight=0.2825

IC=3.5285
weight=0.2834

IC=1.1731
weight=0.8524 IC=3.5243

weight=0.2837

IC=0
weight=Inf

Fig. 1. An example of semantic similarity computa-
tion for GO:0008219 and GO:0006793.  

 
SP algorithm integrates the information from two 

sources. They are the structure information contained 
in the paths connecting the terms, and the IC 
information of the terms represented by the weights on 
the graph. When searching for the shortest path, both 
structure and IC information will be considered, unlike 
the existing edge-based (node-based) methods that use 
only structure (IC) information. 
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4. An approach for nonlinear correlation 

 
The Pearson correlation coefficient is often used to 

evaluate the linear dependency between two variables. 
When dealing with the nonlinear dependency 
problems, evaluation using Pearson correlation will not 
be suitable. Here we introduce an approach for 
characterizing nonlinear correlation [14]. 

Given a set of points {(x1, y1), (x2, y2),…, (xn, yn)}, 
the first step of the algorithm is to apply regression 
analysis to find a fitting curve f(x). The curve 
corresponds to a nonlinear mapping between x={x1,…, 
xn} and y={y1,…, yn}. In the next step, the Pearson 
correlation coefficient is calculated between y and f(x) 
after nonlinear regression. In addition to the Pearson 
correlation coefficient, another metric referred to as 
root mean square error (RMSE) is also calculated 
between y and f(x) using Eq. (12) below. RMSE is 
used to measure the difference between values 
predicted by the model (i.e. f(x)) and the observed 
values (i.e. the value of y). A smaller RMSE 
corresponds to a better prediction model. 

1

2( ( ))
n

i
i iy f x

RMSE
n

=

−
=
�

 (12) 

 
5. Experiments and results 
 

In our experiments, we used the gene expression 
data to validate our algorithm following the way 
described in [20]. The goal of the validation is to find 
out whether the estimated semantic similarity is in line 
with the similarity based on the expression data. In 
general, a higher correlation indicates a better 
performance. We also evaluated other four state-of-the-
art methods for measuring the semantic similarity over 
the terms. In Section 5.1, we will present the 
experimental details, including the description of the 
datasets and the experimental setup. Then, in Section 
5.2, the experimental results together with some 
explanations will be given. 
 
5.1. Data description and experimental setup 

 
We used two datasets in our experiments for 

validation. The first one is the Eisen dataset [3], which 
consists of 2467 genes. The second one is the Spellman 
dataset [15], containing 6178 genes. The details of the 
datasets are described in Table 1. The missing values 

in the two datasets were filled in using the impute 
package from the bioconductor project [5]. 

The annotations for genes were retrieved from the 
Saccharomyces Genome Database (SGD) [13]. In our 
experiments, we used the annotations from BP 
ontology. According to [20], terms at the top levels 
will create noise. Therefore, in our experiments, 
annotations at the first two levels were removed. 

The similarity based on the gene expression data is 
calculated using the Pearson correlation and is referred 
to as the expression similarity. 

We tested other four state-of-the-art methods 
including Resnik’s [11], Jiang’s [6], and the Relevance 
[12] method from the node-based category, and 
Wang’s [18] method from the hybrid category, as a 
comparison to the Shortest Path algorithm proposed by 
us. We used the GOSim package [4] to calculate the 
semantic similarity for Resnik’s, Jiang’s and the 
Relevance methods, and the GOSemSim package [21] 
for Wang’s method.  

To compute the semantic similarity over gene 
products, we used the ‘Max’ operation for all the five 
methods, because it consistently results in the best 
correlation scores for all the methods measuring the 
semantic similarity over the terms [20]. 

 
Table 1: Datasets used in the experiments 

 # of genes # of experiments species 
Eisen  2467 79 yeast 
Spellman 6178 77 yeast 

 
5.2. Experimental results 

 
In the previous works, Pearson correlation was used 

to evaluate the consistency between the semantic 
similarity and the expression similarity. We first 
equally divided the interval [0, 1] into 1000 sub-
intervals. Then we calculated the semantic similarity 
and the expression similarity for each gene pair. All the 
gene pairs were assigned to the sub-intervals according 
to their absolute gene expression similarity. After that, 
we calculated the average semantic similarity for each 
interval. Finally, the Pearson correlation coefficient 
value was calculated between the average semantic 
similarity and the expression similarity. The 
correlation coefficients for the different methods are 
shown in Table 2. From this table, it can be seen that 
the SP method proposed by us performs the best 
among the five methods. Specifically, our method 
achieves the correlation coefficient values of 82.8% 
and 86.9% on the Eisen and Spellman datasets 
respectively, which are about 3% higher than the 
second best methods (i.e. Wang’s method on the Eisen
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Fig. 2. Scatter plots of the min-max normalized semantic similarity versus the gene expression similarity on the 
Eisen and Spellman dataset. 1(a)-1(e) for Eisen dataset; 2(a)-2(e) for Spellman dataset. Five methods are 
compared: (a) Jiang’s method; (b) Resnik’s method; (c) Wang’s method; (d) Relevance method; (e) the Shortest 
Path method. 

 
dataset and Resnik’s method on the Spellman 
dataset), and a more significant improvement over 
the others. 

Next, we calculated the nonlinear correlation 
coefficients and RMSE values for the average 
semantic similarity and the expression similarity 
using the method introduced in Section 4. The 
following mapping is used for the nonlinear 
regression analysis [14, 22]: 

2 31 4 5( )

1 1( )
2 1 a x af x a a x a

e −
� �= − + +� �+� �

 (13) 

 
Table 2: Pearson correlation coefficient 

 Jiang  Resnik Wang Relevance SP 
Eisen 0.7901 0.8031 0.7955 0.7817 0.8278
Spellman 0.7436 0.8383 0.8368 0.7718 0.8685 

 
Table 3:  

Nonlinear correlation and RMSE on Eisen dataset 
 Jiang  Resnik Wang Relevance SP 
corr 0.9939 0.9602 0.9950 0.9581 0.9892
RMSE 0.0249 0.0299 0.0190 0.0321 0.0166 

 
Table 4:  

Nonlinear correlation and RMSE on Spellman dataset 
 Jiang  Resnik Wang Relevance SP 
corr 0.9133 0.9295 0.9636 0.8869 0.9656
RMSE 0.0738 0.0518 0.0435 0.0553 0.0354 

 
Table 5:  

Time consumption (sec) for example shown in Fig. 1 
 Jiang  Resnik Wang Relevance SP 
Time 0.02 0.01 0.42 0.01 0.15

 

The correlation coefficients and RMSE values on 
the Eisen dataset and the Spellman dataset are listed 
in Table 3 and Table 4 respectively. Fig. 2 shows the 
scatter plots of the min-max normalized gene 
semantic similarity versus the expression similarity 
for the five methods on the two datasets. Min-max 
normalization means that the minimum value is 
mapped to 0, the maximum value is mapped to 1, and 
the other values are linearly rescaled accordingly. In 
this way, the various scatter plots, which correspond 
to methods with different dynamic ranges for the 
semantic similarity values, can be more easily 
compared with each other. The curves are obtained 
by a nonlinear fitting using the model in Eq. (13). 

Wang’s method and our SP method have quite 
similar performance with respect to the nonlinear 
correlation coefficients and RMSE scores, and they 
are much better than the other three methods. 
However, Wang’s method is heavily time-
consuming. First, the IC value used in other methods 
is used to compute the “semantic value” in Wang’s 
method based on the contribution of the ancestors. 
Therefore, to obtain a term’s “semantic value”, we 
need to compute the contribution from all its 
ancestors in advance. In contrast, the IC value used 
by our SP method only relies on the number of genes 
annotated with the term, which can be quickly 
retrieved from the corpus. Second, the contribution 
from the same ancestor to different terms may not be 
the same. Therefore, the contribution values cannot 
be stored and reused for computing different term’s 
“semantic value”, resulting in computational 
redundancy. Third, when computing the semantic 
similarity, Wang’s method considers not only the 
semantic values of the two terms but also the 
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contribution from their common ancestors to the 
terms. As a comparison, our SP method only 
computes the sum of the reciprocal of the IC values 
of the terms on the shortest path, which can be 
performed more efficiently. To support these claims, 
we report the time consumption (in sec) in Table 5 
for the five methods on the example shown in Fig. 1. 
It can be seen that the time consumption of Wang’s 
method is about 3 times that of SP method. 

 
5. Conclusion 

 
In this paper, a novel method for measuring the 

semantic similarity, namely the Shortest Path (SP) 
algorithm, is proposed. The SP algorithm depends on 
the substructure of GO containing two terms and 
their MICA. The substructure contains more 
information than the single IC values used in the 
node-based algorithm. In addition, the weights 
assigned to the substructure are more consistent with 
common interpretation than the previous edge-based 
methods. In general, the semantic similarity obtained 
by SP algorithm better correlates with the expression 
similarity than other node-based methods. Moreover, 
compared with another state-of-the art hybrid method, 
Wang’s method, the SP algorithm has the advantage 
of less computation time due to fewer variables. 
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