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Objectives of this lecture 

This lecture will enable students to 
• be familiar with the content of SA documents 
• be able to write SA documents according to the template 
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SA definition 

The software architecture of a system is the set of 
structures needed to reason about the system, which 
comprise software elements, relations among them, and 
properties of both. 
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What is a view? And a structure? 

Modern software systems are 
complex. 
We focus at any time on a small 
number of issues of the system. 
View 

• Representation of a coherent set 
of architectural elements, as 
read/written by system 
stakeholders (plus relations) 

Structure 
• Set of architectural elements as 

they exist in software or hardware 

Structure 

View 
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What is a view? And a structure? 

A view is a representation of a structure. 
• A module structure is the set of the system’s modules and 

their organization 
• A module view is the representation of that structure, 

documented according to a template in a chosen notation, 
and used by some system stakeholders 

Architects design structures. They document views of 
those structures 
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SA structures 

Module structure 
• Decomposition 
• Uses 
• Layered 
• Class 
• Data model 

C&C structure 
• Service 
• Concurrency 

 
 
 

Allocation structure 
• Deployment 
• Implementation 
• Work assignment 
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Module structures 

Module structures 
• The elements are modules such as classes, layers. 
• Focus on the functional responsibility of each module, not 

emphasize runtime issue. 
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C&C structures 

Component-and-connector structures  
• The elements are runtime components (such as services, 

peers, clients, servers, filters) and connectors (such as call-
return, process synchronization operators, pipes). 
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Allocation structures 

Allocation structures 
• They show the relationship between the software elements 

and elements in one or more external environments. 
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Relating structures to each other 

Not all systems consider many structures 
• Big vs small 

Structures 
• Main engineering leverage points of an architecture 
• Bring with them the power to manipulate one/more quality 

attributes 
• Powerful separation of concerns approach 
• Useful for architecture documentation 
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Which structures to choose? 

Many approaches: 
1. Kruchten, 1995: Four+1 

• Focus on four structures 
o Logical, process, development, physical 

• Rational Unified Process 
2. Soni, Nord, Hofmeister, 1995: 

• Conceptual, module, execution, code 
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Which structures to choose? 

Among architect’s obligations 
• Understand how the various structures lead to quality 

attributes 
• Choose the structures that will best deliver those attributes 
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Summary of architectural structures 

We often think of system’s structure in terms of its 
functionality 
There are system properties in addition to functionality 

• Physical distribution 
• Process communication 
• Synchronization, etc 

Each structure: related to quality attributes 
• Uses structure: engineered to build an extendable system 
• Process structure: to eliminate deadlocks and bottlenecks 
• Decomposition structure: to build a modifiable system 
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SA documentation 

Significance 
• Good architecture is useless if not understood or wrongly 

understood 
• A basis for analysis 
• Blueprint for construction 
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SA documentation 

Prescriptive 
• Prescribes what should be true by placing constraints on 

decisions to be made 
Descriptive 

• Describes what is true by recounting decisions already 
made about system design 

Different stakeholders have different needs 
• For information kinds, levels, treatments 
• Stakeholder should quickly find the relevant documentation 
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SA documentation 

Uses of SA documentation 
• Key means to educate new people 
• Primary vehicle for communication among stakeholders 

o Same architect: repository of thought, storehouse of design 
decisions 

o Different architect: check how predecessors tackled difficult tasks, 
why some decisions made 

• Basis for system analysis and construction 
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Views and SA documentations 

A SA is complex which needs multiple views to represent. 
• A view contains a particular type of system elements. 

o e.g. a layered view show layers 

Basic principle of documenting SA: Documenting the 
architecture is a matter of 

1. Documenting the relevant views 
2. Adding documentation that applies to more than one view 
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Views 

Module views 
C&C views 
Allocation views 
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Views 

Module views 
C&C views 
Allocation views 
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Module views 

Categories: 
• Decomposition views 
• Uses views 
• Layers views 

Elements in module views: 
• any decomposition unit: classes, layers… 

o Properties described: name, responsibility, visibility interfaces, 
implementation information, test information, inplementation 
constrains… 

Relations in module views: 
• is part of, depends on, is a 
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Module views 

Usages: 
• Blueprint for construction of the code 
• Change-impact analysis 
• Planning incremental development 
• Requirements traceability analysis 
• … 
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Views 

Module views 
C&C views 
Allocation views 
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C&C views 

Categories: 
• Service-oriented architecture 
• client-server views 
• communication process views 

Elements: 
• Runtime entities – components 

o processes, objects, clients, servers, data stores… 

• Pathways of interaction 
o communication links and protocol, information flows, access to 

shared storage… 
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C&C views 

Categories: 
• Service-oriented architecture 
• client-server views 
• communication process views 

Elements: 
• Connectors 

o service invocations, asynchronous message queues, pipes… 
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C&C views 

Other related concepts: 
•  Port: interface of component 

o defines a point of potential interaction of a component with 
environment 

o can be replicated 

 
•  Roles: interface of connector 

o defines the ways in which the connector many be used by 
components to carry out interaction 

o e.g. Client-server connector might have invokes-services and 
provides-services roles; a pipe might have writer and reader roles. 

o can be replicated 
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C&C views 

Associated properties of elements of a C&C view: 
• Name 
• Type 
• Others depend on the type of component or connector 

o e.g. For performance analysis: latencies, queue capacities, thread 
priorities 

o Other properties: reliability, performance, functionality, security… 
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C&C view 

Usages: 
• Show how the system works. 
• Guide development by specifying structure and behavior of 

runtime elements. 
• Help reason about runtime system quality attributes. 
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Views 

Module views 
C&C views 
Allocation views 
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Allocation views 

Elements 
• Software element 
• Environmental element 

Relations in allocation view 
• allocated to 

o a mapping from software elements to environmental elements 

Usages: 
• For reasoning about performance, availability, security… 
• For reasoning about distributed development and allocation 

of work to teams. 
• … 
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Choosing relevant views 

Needed documentation package is based on 
• Who the stakeholders are 
• The future uses of documentation 
• Quality attributes 
• Size of the system 

At least one module view, one C&C view, and for larger 
systems, one allocation view 

• In addition, there is a three-step method for choosing the 
views. 
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Choosing relevant views 

Step 1. Produce candidate view list (matrix) 
• List stakeholders 
• List needed views 
• Fill in cell with amount info: none, overview only, 

moderate detail, high detail 
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Choosing relevant views 

 
 
 
 
Example of 
table 
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Choosing relevant views 

Step 2. Combine views 
• Too many views 
• Remove views with “overview only” info or that serve very 

few stakeholders 
• See if stakeholders of the above can be served by other 

views with more needed info 
• Combine views 
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Choosing relevant views 

Step 3. Prioritize 
• Decide what to do first 

o Release (high-level) decomposition view early. 
o Don’t have to satisfy all the information. 
o Don’t have to complete one view before starting another. 
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Documenting a view 

Principle of architecture documentation 
1. Documenting the relevant views 
2. Adding documentation that applies to more than one view 
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Documenting a view 

 
 
 
 
View Template 
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Section 1: Primary presentation 

Elements that populate the view and relationships among 
them 

• Should contain the information you wish to convey about 
the system - in the vocabulary of that view 

• Not necessarily all of them 
o e.g. normal operation here, exception and error handling in other 

parts 
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Section 1: Primary presentation 

Usually graphical, sometimes tabular 
• If your primary presentation is graphical, make sure to 

include a key that explains the notation 
• If that text is presented according to certain stylistic rules, 

these rules should be stated or incorporated by reference, as 
the analog to the graphical notation key. 

• Present a terse summary of the most important information 
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Section 2: Element catalog 

Details at least the elements and relationships shown in 
primary presentation 
Backup for primary presentation 
Elements and relations omitted from primary presentation 

• Belong here 
o Introduced and explained 

Describes 
• The properties of elements 
• The properties of relations 
• The behavior of elements 
• The interfaces of elements 
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Section 3: Context diagram 

Shows how system in the view relates to environment in 
the vocabulary of view 
Example: C&C view 

• Show which component and connectors interact with 
external components and connectors 

• Via which interfaces and protocols 
Purpose: depict the scope of a view 
Entities in the environment may be humans, other 
computer systems, or physical objects, such as sensors 
or controlled devices 
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Section 4: Variability guide 

Shows how to exercise any variation points part of the 
architecture in the view 
Example of variability: product lines 
Includes documentation about each point of variation in 
architecture, including 

• The options among which the choice is to be made 
o Module view: various parameterizations of modules 
o C&C view: constraints on replication, scheduling, protocol choice 
o Allocation view: conditions of allocation 

• The binding time of the option 
• Design, build, runtime 
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Section 5: Rationale 

Explains why the design reflected in the view came to be. 
The goal is to explain 

• why design is as it is 
• provides convincing argument that it is sound 

The choice of a pattern should be justified by 
• describing the architectural problem and 
• the rationale for choosing it. 
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Documenting information beyond views 

Template for documentation beyond views 

Template for Documentation 
Beyond Views 

Section 1.  Documentation Roadmap 
Section 2.  How a View Is Documented 
 
Section 3.  System Overview 
Section 4.  Mapping Between Views 
Section 5.  Rationale 
Section 6.  Directory – index, glossary, 
                    acronym list 

{ 

{
Architecture 

documentation 
information 

Architecture 
information 
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Section 1. Documentation roadmap 

Tells reader what information is in the document and 
where to find it. 

• Scope and summary 
• How the document is organized 
• View overview 

o the name of view and pattern 
o a description of element types, relation types, and property types 
o a description of language, modeling techniques… 

• How stakeholders can use the documentation 
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Section 2. How a view is documented 

Explain the standard organization used to document 
views. 

• either the one described in the lecture or one of your own 
• using a template 
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Section 3. System overview 

A short prose description of system’s function, users, 
background or constraints. 
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Section 4. Mapping between views 

Help reader understand the associations between views. 
• using tables 
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Section 5. Rationale 

This section documents the architectural decisions that 
apply to more than one view. 

• describe the decisions about which fundamental 
architecture patterns to use 
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Section 6. Directory 

The directory is a set of reference material. 
• index of terms, a glossary, and an acronym list 



School of Software Engineering Software Architecture, Spring 2014 

50 

School of Software Engineering Software Architecture, Spring 2014 

50 

Documenting behavior 

Structural information (views) not enough 
• e.g. deadlock possibilities not captured 

Behavior documented about 
• how architecture elements interact with each other 

Behavior descriptions add info on 
• ordering of interactions among elements 
• opportunities for concurrency 
• time dependencies of interactions 
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Notations for documenting behavior 

Trace-oriented language 
Comprehensive languages 
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Trace-oriented language 

A trace describes a sequence of activities or interactions 
between elements. 
Four notations for documenting traces: 

• Use cases 
• Sequence diagrams 
• Communication diagrams 
• Activity diagrams 



School of Software Engineering Software Architecture, Spring 2014 

53 

School of Software Engineering Software Architecture, Spring 2014 

53 

Trace-oriented language 

A trace describes a sequence of activities or interactions 
between elements. 
Four notations for documenting traces: 

• Use cases 
• Sequence diagrams 
• Communication diagrams 
• Activity diagrams 
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Trace-oriented language 

A trace describes a sequence of activities or interactions 
between elements. 
Four notations for documenting traces: 

• Use cases 
• Sequence diagrams 
• Communication diagrams 
• Activity diagrams 
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Trace-oriented language 

A trace describes a sequence of activities or interactions 
between elements. 
Four notations for documenting traces: 

• Use cases 
• Sequence diagrams 
• Communication diagrams 
• Activity diagrams 
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Comprehensive language 

Comprehensive models show the complete behavior of 
structural elements. 

• State machine diagram 
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Summary 

SA views 
• Module views 
• C&C views 
• Allocation views 

SA documentation 
• Software Architecture Views 
• Architecture Documentation Beyond Views 
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The End 

http://house.sohu.com/msgview/2874/1/51168420.html
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