
School of Software Engineering Software Architecture, Spring 2014

1

Software Architecture, Spring 2014 School of Software Engineering

1

Views and Documenting Software
Architecture

March 2014
Ying SHEN
SSE, Tongji University

School of Software Engineering Software Architecture, Spring 2014

2

School of Software Engineering Software Architecture, Spring 2014

2

Objectives of this lecture

This lecture will enable students to
• be familiar with the content of SA documents
• be able to write SA documents according to the template

School of Software Engineering Software Architecture, Spring 2014

3

School of Software Engineering Software Architecture, Spring 2014

3

SA definition

The software architecture of a system is the set of
structures needed to reason about the system, which
comprise software elements, relations among them, and
properties of both.

School of Software Engineering Software Architecture, Spring 2014

4

School of Software Engineering Software Architecture, Spring 2014

4

What is a view? And a structure?

Modern software systems are
complex.
We focus at any time on a small
number of issues of the system.
View

• Representation of a coherent set
of architectural elements, as
read/written by system
stakeholders (plus relations)

Structure
• Set of architectural elements as

they exist in software or hardware

Structure

View

School of Software Engineering Software Architecture, Spring 2014

5

School of Software Engineering Software Architecture, Spring 2014

5

What is a view? And a structure?

A view is a representation of a structure.
• A module structure is the set of the system’s modules and

their organization
• A module view is the representation of that structure,

documented according to a template in a chosen notation,
and used by some system stakeholders

Architects design structures. They document views of
those structures

School of Software Engineering Software Architecture, Spring 2014

6

School of Software Engineering Software Architecture, Spring 2014

6

SA structures

Module structure
• Decomposition
• Uses
• Layered
• Class
• Data model

C&C structure
• Service
• Concurrency

Allocation structure
• Deployment
• Implementation
• Work assignment

School of Software Engineering Software Architecture, Spring 2014

7

School of Software Engineering Software Architecture, Spring 2014

7

Module structures

Module structures
• The elements are modules such as classes, layers.
• Focus on the functional responsibility of each module, not

emphasize runtime issue.

School of Software Engineering Software Architecture, Spring 2014

8

School of Software Engineering Software Architecture, Spring 2014

8

C&C structures

Component-and-connector structures
• The elements are runtime components (such as services,

peers, clients, servers, filters) and connectors (such as call-
return, process synchronization operators, pipes).

School of Software Engineering Software Architecture, Spring 2014

9

School of Software Engineering Software Architecture, Spring 2014

9

Allocation structures

Allocation structures
• They show the relationship between the software elements

and elements in one or more external environments.

School of Software Engineering Software Architecture, Spring 2014

10

School of Software Engineering Software Architecture, Spring 2014

10

Relating structures to each other

Not all systems consider many structures
• Big vs small

Structures
• Main engineering leverage points of an architecture
• Bring with them the power to manipulate one/more quality

attributes
• Powerful separation of concerns approach
• Useful for architecture documentation

School of Software Engineering Software Architecture, Spring 2014

11

School of Software Engineering Software Architecture, Spring 2014

11

Which structures to choose?

Many approaches:
1. Kruchten, 1995: Four+1

• Focus on four structures
o Logical, process, development, physical

• Rational Unified Process
2. Soni, Nord, Hofmeister, 1995:

• Conceptual, module, execution, code

School of Software Engineering Software Architecture, Spring 2014

12

School of Software Engineering Software Architecture, Spring 2014

12

Which structures to choose?

Among architect’s obligations
• Understand how the various structures lead to quality

attributes
• Choose the structures that will best deliver those attributes

School of Software Engineering Software Architecture, Spring 2014

13

School of Software Engineering Software Architecture, Spring 2014

13

Summary of architectural structures

We often think of system’s structure in terms of its
functionality
There are system properties in addition to functionality

• Physical distribution
• Process communication
• Synchronization, etc

Each structure: related to quality attributes
• Uses structure: engineered to build an extendable system
• Process structure: to eliminate deadlocks and bottlenecks
• Decomposition structure: to build a modifiable system

School of Software Engineering Software Architecture, Spring 2014

14

School of Software Engineering Software Architecture, Spring 2014

14

SA documentation

Significance
• Good architecture is useless if not understood or wrongly

understood
• A basis for analysis
• Blueprint for construction

School of Software Engineering Software Architecture, Spring 2014

15

School of Software Engineering Software Architecture, Spring 2014

15

SA documentation

Prescriptive
• Prescribes what should be true by placing constraints on

decisions to be made
Descriptive

• Describes what is true by recounting decisions already
made about system design

Different stakeholders have different needs
• For information kinds, levels, treatments
• Stakeholder should quickly find the relevant documentation

School of Software Engineering Software Architecture, Spring 2014

16

School of Software Engineering Software Architecture, Spring 2014

16

SA documentation

Uses of SA documentation
• Key means to educate new people
• Primary vehicle for communication among stakeholders

o Same architect: repository of thought, storehouse of design
decisions

o Different architect: check how predecessors tackled difficult tasks,
why some decisions made

• Basis for system analysis and construction

School of Software Engineering Software Architecture, Spring 2014

17

School of Software Engineering Software Architecture, Spring 2014

17

Views and SA documentations

A SA is complex which needs multiple views to represent.
• A view contains a particular type of system elements.

o e.g. a layered view show layers

Basic principle of documenting SA: Documenting the
architecture is a matter of

1. Documenting the relevant views
2. Adding documentation that applies to more than one view

School of Software Engineering Software Architecture, Spring 2014

18

School of Software Engineering Software Architecture, Spring 2014

18

Views

Module views
C&C views
Allocation views

School of Software Engineering Software Architecture, Spring 2014

19

School of Software Engineering Software Architecture, Spring 2014

19

Views

Module views
C&C views
Allocation views

School of Software Engineering Software Architecture, Spring 2014

20

School of Software Engineering Software Architecture, Spring 2014

20

Module views

Categories:
• Decomposition views
• Uses views
• Layers views

Elements in module views:
• any decomposition unit: classes, layers…

o Properties described: name, responsibility, visibility interfaces,
implementation information, test information, inplementation
constrains…

Relations in module views:
• is part of, depends on, is a

School of Software Engineering Software Architecture, Spring 2014

21

School of Software Engineering Software Architecture, Spring 2014

21

Module views

Usages:
• Blueprint for construction of the code
• Change-impact analysis
• Planning incremental development
• Requirements traceability analysis
• …

School of Software Engineering Software Architecture, Spring 2014

22

School of Software Engineering Software Architecture, Spring 2014

22

Views

Module views
C&C views
Allocation views

School of Software Engineering Software Architecture, Spring 2014

23

School of Software Engineering Software Architecture, Spring 2014

23

C&C views

Categories:
• Service-oriented architecture
• client-server views
• communication process views

Elements:
• Runtime entities – components

o processes, objects, clients, servers, data stores…

• Pathways of interaction
o communication links and protocol, information flows, access to

shared storage…

School of Software Engineering Software Architecture, Spring 2014

24

School of Software Engineering Software Architecture, Spring 2014

24

C&C views

Categories:
• Service-oriented architecture
• client-server views
• communication process views

Elements:
• Connectors

o service invocations, asynchronous message queues, pipes…

School of Software Engineering Software Architecture, Spring 2014

25

School of Software Engineering Software Architecture, Spring 2014

25

C&C views

Other related concepts:
• Port: interface of component

o defines a point of potential interaction of a component with
environment

o can be replicated

• Roles: interface of connector

o defines the ways in which the connector many be used by
components to carry out interaction

o e.g. Client-server connector might have invokes-services and
provides-services roles; a pipe might have writer and reader roles.

o can be replicated

School of Software Engineering Software Architecture, Spring 2014

26

School of Software Engineering Software Architecture, Spring 2014

26

C&C views

Associated properties of elements of a C&C view:
• Name
• Type
• Others depend on the type of component or connector

o e.g. For performance analysis: latencies, queue capacities, thread
priorities

o Other properties: reliability, performance, functionality, security…

School of Software Engineering Software Architecture, Spring 2014

27

School of Software Engineering Software Architecture, Spring 2014

27

C&C view

Usages:
• Show how the system works.
• Guide development by specifying structure and behavior of

runtime elements.
• Help reason about runtime system quality attributes.

School of Software Engineering Software Architecture, Spring 2014

28

School of Software Engineering Software Architecture, Spring 2014

28

Views

Module views
C&C views
Allocation views

School of Software Engineering Software Architecture, Spring 2014

29

School of Software Engineering Software Architecture, Spring 2014

29

Allocation views

Elements
• Software element
• Environmental element

Relations in allocation view
• allocated to

o a mapping from software elements to environmental elements

Usages:
• For reasoning about performance, availability, security…
• For reasoning about distributed development and allocation

of work to teams.
• …

School of Software Engineering Software Architecture, Spring 2014

30

School of Software Engineering Software Architecture, Spring 2014

30

Choosing relevant views

Needed documentation package is based on
• Who the stakeholders are
• The future uses of documentation
• Quality attributes
• Size of the system

At least one module view, one C&C view, and for larger
systems, one allocation view

• In addition, there is a three-step method for choosing the
views.

School of Software Engineering Software Architecture, Spring 2014

31

School of Software Engineering Software Architecture, Spring 2014

31

Choosing relevant views

Step 1. Produce candidate view list (matrix)
• List stakeholders
• List needed views
• Fill in cell with amount info: none, overview only,

moderate detail, high detail

School of Software Engineering Software Architecture, Spring 2014

32

School of Software Engineering Software Architecture, Spring 2014

32

Choosing relevant views

Example of
table

School of Software Engineering Software Architecture, Spring 2014

33

School of Software Engineering Software Architecture, Spring 2014

33

Choosing relevant views

Step 2. Combine views
• Too many views
• Remove views with “overview only” info or that serve very

few stakeholders
• See if stakeholders of the above can be served by other

views with more needed info
• Combine views

School of Software Engineering Software Architecture, Spring 2014

34

School of Software Engineering Software Architecture, Spring 2014

34

Choosing relevant views

Step 3. Prioritize
• Decide what to do first

o Release (high-level) decomposition view early.
o Don’t have to satisfy all the information.
o Don’t have to complete one view before starting another.

School of Software Engineering Software Architecture, Spring 2014

35

School of Software Engineering Software Architecture, Spring 2014

35

Documenting a view

Principle of architecture documentation
1. Documenting the relevant views
2. Adding documentation that applies to more than one view

School of Software Engineering Software Architecture, Spring 2014

36

School of Software Engineering Software Architecture, Spring 2014

36

Documenting a view

View Template

School of Software Engineering Software Architecture, Spring 2014

37

School of Software Engineering Software Architecture, Spring 2014

37

Section 1: Primary presentation

Elements that populate the view and relationships among
them

• Should contain the information you wish to convey about
the system - in the vocabulary of that view

• Not necessarily all of them
o e.g. normal operation here, exception and error handling in other

parts

School of Software Engineering Software Architecture, Spring 2014

38

School of Software Engineering Software Architecture, Spring 2014

38

Section 1: Primary presentation

Usually graphical, sometimes tabular
• If your primary presentation is graphical, make sure to

include a key that explains the notation
• If that text is presented according to certain stylistic rules,

these rules should be stated or incorporated by reference, as
the analog to the graphical notation key.

• Present a terse summary of the most important information

School of Software Engineering Software Architecture, Spring 2014

39

School of Software Engineering Software Architecture, Spring 2014

39

Section 2: Element catalog

Details at least the elements and relationships shown in
primary presentation
Backup for primary presentation
Elements and relations omitted from primary presentation

• Belong here
o Introduced and explained

Describes
• The properties of elements
• The properties of relations
• The behavior of elements
• The interfaces of elements

School of Software Engineering Software Architecture, Spring 2014

40

School of Software Engineering Software Architecture, Spring 2014

40

Section 3: Context diagram

Shows how system in the view relates to environment in
the vocabulary of view
Example: C&C view

• Show which component and connectors interact with
external components and connectors

• Via which interfaces and protocols
Purpose: depict the scope of a view
Entities in the environment may be humans, other
computer systems, or physical objects, such as sensors
or controlled devices

School of Software Engineering Software Architecture, Spring 2014

41

School of Software Engineering Software Architecture, Spring 2014

41

Section 4: Variability guide

Shows how to exercise any variation points part of the
architecture in the view
Example of variability: product lines
Includes documentation about each point of variation in
architecture, including

• The options among which the choice is to be made
o Module view: various parameterizations of modules
o C&C view: constraints on replication, scheduling, protocol choice
o Allocation view: conditions of allocation

• The binding time of the option
• Design, build, runtime

School of Software Engineering Software Architecture, Spring 2014

42

School of Software Engineering Software Architecture, Spring 2014

42

Section 5: Rationale

Explains why the design reflected in the view came to be.
The goal is to explain

• why design is as it is
• provides convincing argument that it is sound

The choice of a pattern should be justified by
• describing the architectural problem and
• the rationale for choosing it.

School of Software Engineering Software Architecture, Spring 2014

43

School of Software Engineering Software Architecture, Spring 2014

43

Documenting information beyond views

Template for documentation beyond views

Template for Documentation
Beyond Views

Section 1. Documentation Roadmap
Section 2. How a View Is Documented

Section 3. System Overview
Section 4. Mapping Between Views
Section 5. Rationale
Section 6. Directory – index, glossary,
 acronym list

{

{
Architecture

documentation
information

Architecture
information

School of Software Engineering Software Architecture, Spring 2014

44

School of Software Engineering Software Architecture, Spring 2014

44

Section 1. Documentation roadmap

Tells reader what information is in the document and
where to find it.

• Scope and summary
• How the document is organized
• View overview

o the name of view and pattern
o a description of element types, relation types, and property types
o a description of language, modeling techniques…

• How stakeholders can use the documentation

School of Software Engineering Software Architecture, Spring 2014

45

School of Software Engineering Software Architecture, Spring 2014

45

Section 2. How a view is documented

Explain the standard organization used to document
views.

• either the one described in the lecture or one of your own
• using a template

School of Software Engineering Software Architecture, Spring 2014

46

School of Software Engineering Software Architecture, Spring 2014

46

Section 3. System overview

A short prose description of system’s function, users,
background or constraints.

School of Software Engineering Software Architecture, Spring 2014

47

School of Software Engineering Software Architecture, Spring 2014

47

Section 4. Mapping between views

Help reader understand the associations between views.
• using tables

School of Software Engineering Software Architecture, Spring 2014

48

School of Software Engineering Software Architecture, Spring 2014

48

Section 5. Rationale

This section documents the architectural decisions that
apply to more than one view.

• describe the decisions about which fundamental
architecture patterns to use

School of Software Engineering Software Architecture, Spring 2014

49

School of Software Engineering Software Architecture, Spring 2014

49

Section 6. Directory

The directory is a set of reference material.
• index of terms, a glossary, and an acronym list

School of Software Engineering Software Architecture, Spring 2014

50

School of Software Engineering Software Architecture, Spring 2014

50

Documenting behavior

Structural information (views) not enough
• e.g. deadlock possibilities not captured

Behavior documented about
• how architecture elements interact with each other

Behavior descriptions add info on
• ordering of interactions among elements
• opportunities for concurrency
• time dependencies of interactions

School of Software Engineering Software Architecture, Spring 2014

51

School of Software Engineering Software Architecture, Spring 2014

51

Notations for documenting behavior

Trace-oriented language
Comprehensive languages

School of Software Engineering Software Architecture, Spring 2014

52

School of Software Engineering Software Architecture, Spring 2014

52

Trace-oriented language

A trace describes a sequence of activities or interactions
between elements.
Four notations for documenting traces:

• Use cases
• Sequence diagrams
• Communication diagrams
• Activity diagrams

School of Software Engineering Software Architecture, Spring 2014

53

School of Software Engineering Software Architecture, Spring 2014

53

Trace-oriented language

A trace describes a sequence of activities or interactions
between elements.
Four notations for documenting traces:

• Use cases
• Sequence diagrams
• Communication diagrams
• Activity diagrams

School of Software Engineering Software Architecture, Spring 2014

54

School of Software Engineering Software Architecture, Spring 2014

54

Trace-oriented language

A trace describes a sequence of activities or interactions
between elements.
Four notations for documenting traces:

• Use cases
• Sequence diagrams
• Communication diagrams
• Activity diagrams

School of Software Engineering Software Architecture, Spring 2014

55

School of Software Engineering Software Architecture, Spring 2014

55

Trace-oriented language

A trace describes a sequence of activities or interactions
between elements.
Four notations for documenting traces:

• Use cases
• Sequence diagrams
• Communication diagrams
• Activity diagrams

School of Software Engineering Software Architecture, Spring 2014

56

School of Software Engineering Software Architecture, Spring 2014

56

Comprehensive language

Comprehensive models show the complete behavior of
structural elements.

• State machine diagram

School of Software Engineering Software Architecture, Spring 2014

57

School of Software Engineering Software Architecture, Spring 2014

57

Summary

SA views
• Module views
• C&C views
• Allocation views

SA documentation
• Software Architecture Views
• Architecture Documentation Beyond Views

School of Software Engineering Software Architecture, Spring 2014

58

School of Software Engineering Software Architecture, Spring 2014

58

The End

http://house.sohu.com/msgview/2874/1/51168420.html

	Views and Documenting Software Architecture
	Objectives of this lecture
	SA definition
	What is a view? And a structure?
	What is a view? And a structure?
	SA structures
	Module structures
	C&C structures
	Allocation structures
	Relating structures to each other
	Which structures to choose?
	Which structures to choose?
	Summary of architectural structures
	SA documentation
	SA documentation
	SA documentation
	Views and SA documentations
	Views
	Views
	Module views
	Module views
	Views
	C&C views
	C&C views
	C&C views
	C&C views
	C&C view
	Views
	Allocation views
	Choosing relevant views
	Choosing relevant views
	Choosing relevant views
	Choosing relevant views
	Choosing relevant views
	Documenting a view
	Documenting a view
	Section 1: Primary presentation
	Section 1: Primary presentation
	Section 2: Element catalog
	Section 3: Context diagram
	Section 4: Variability guide
	Section 5: Rationale
	Documenting information beyond views
	Section 1. Documentation roadmap
	Section 2. How a view is documented
	Section 3. System overview
	Section 4. Mapping between views
	Section 5. Rationale
	Section 6. Directory
	Documenting behavior
	Notations for documenting behavior
	Trace-oriented language
	Trace-oriented language
	Trace-oriented language
	Trace-oriented language
	Comprehensive language
	Summary
	The End

