
School of Software EngineeringSoftware Architecture, Spring 2015

1

Software Architecture, Spring 2015 School of Software Engineering

1

Attribute-Driven Design Method

April 2015

Ying SHEN

SSE, Tongji University

School of Software EngineeringSoftware Architecture, Spring 2015

2

School of Software EngineeringSoftware Architecture, Spring 2015

2

Lecture objectives

This lecture will enable student to

• understand ADD steps

• design the architecture using ADD method

School of Software EngineeringSoftware Architecture, Spring 2015

3

School of Software EngineeringSoftware Architecture, Spring 2015

3

Architecture in the life cycle

Evolutionary Delivery Life Cycle (EDLC)

• User and customer feedback

• Iterate through several releases before final release

• Adding of functionality with each iteration

School of Software EngineeringSoftware Architecture, Spring 2015

4

School of Software EngineeringSoftware Architecture, Spring 2015

4

Evolutionary delivery life cycle

Software

Concept

Preliminary

Requirements

Analysis

Design of

Architecture

and System Core

Develop

a Version

Deliver

the Version

Incorporate

Customer

Feedback

Elicit

Customer

Feedback

Deliver

Final

Version

School of Software EngineeringSoftware Architecture, Spring 2015

5

School of Software EngineeringSoftware Architecture, Spring 2015

5

When do we start developing the SA?

Requirements come first

• But not all requirements are necessary to get started

Architecture shaped by (remember the ABC)

• Functional requirements

• Quality requirements

• Business requirements

• Expertise and experience of architects

We call these requirements “architectural drivers”

School of Software EngineeringSoftware Architecture, Spring 2015

6

School of Software EngineeringSoftware Architecture, Spring 2015

6

Determining architectural drivers

To identify the Architectural Drivers

Identify the highest priority Business Goals

• Only a few of these

Turn these into scenarios or use cases

Choose the ones that have the most impact on the

architecture

• These are the architectural drivers

• There should be less than 10 of these

School of Software EngineeringSoftware Architecture, Spring 2015

7

School of Software EngineeringSoftware Architecture, Spring 2015

7

Attribute driven design (ADD) method

Method to design architecture so that both functional and

quality requirements are met

Defines SA by decomposing based on the quality

attributes

Recursive decomposition process; at each stage

• Tactics are chosen to satisfy some qualities

• Functionality is added

School of Software EngineeringSoftware Architecture, Spring 2015

8

School of Software EngineeringSoftware Architecture, Spring 2015

8

ADD input

Input:

1. The set of quality scenarios for drivers

• Key drivers may change during design, due to

o better understanding or changing of requirements

• Quality attribute requirements are a good start

o although they can’t be all known a priori

2. The context description

• What are the boundaries of the system being designed?

• What are the external systems, devices, users, and

environmental conditions with which the system being

designed must interact?

School of Software EngineeringSoftware Architecture, Spring 2015

9

School of Software EngineeringSoftware Architecture, Spring 2015

9

ADD output

Output: a set of sketches of architectural views.

• First several levels of a module decomposition view of an

architecture

• Not all details of the views result from applying ADD

• System described as

o a set of containers for functionality

o the interactions among the containers

School of Software EngineeringSoftware Architecture, Spring 2015

10

School of Software EngineeringSoftware Architecture, Spring 2015

10

ADD output

Critical for achieving desired qualities

Provides framework for achieving the functionality

Difference between ADD output and an architecture ready

for implementation

• Detailed design decisions postponed

o e.g. choosing the names and parameter types of interface

• Flexibility

School of Software EngineeringSoftware Architecture, Spring 2015

11

School of Software EngineeringSoftware Architecture, Spring 2015

11

Case study: Garage Door Opener

Garage door opener: A real-time system responsible for

raising and lowering the garage door, via

• Switch button

• Remote control

• Home information system

It is possible to diagnose problems of opener from the

home information system (HIS)

Product line architecture! (PLA)

• The processor is different from other products.

School of Software EngineeringSoftware Architecture, Spring 2015

12

School of Software EngineeringSoftware Architecture, Spring 2015

12

Case study: Garage Door Opener

Input to ADD: a set of requirements

• Functional requirements as use cases

• Constraints

• Quality requirements

o Set of system-specific quality scenarios

o Only the necessary detail

School of Software EngineeringSoftware Architecture, Spring 2015

13

School of Software EngineeringSoftware Architecture, Spring 2015

13

Case study: Scenarios

Scenarios for garage door system

• Reacting to obstacles [Performance]

o If an obstacle (person/object) is detected by garage door during
descent, it must halt or re-open within 0.1 second and report to
HIS and user interface.

• Door commands [Performance]

o Remote control; HIS; button.

o Open, close, halt, diagnosis

o Detect a command and initiate execution within 0.5 sec

School of Software EngineeringSoftware Architecture, Spring 2015

14

School of Software EngineeringSoftware Architecture, Spring 2015

14

Case study: Scenarios

Scenarios for garage door system

• Processors [Modifiability]

o Processors can change due to either obsolescence or changes in
the marketplace.

• UI [Modifiability]

o Various garage door openers have various controls.

• Garage door opener should be accessible for diagnosis and

administration from within the HIS

o Using a product-specific diagnosis protocol

School of Software EngineeringSoftware Architecture, Spring 2015

15

School of Software EngineeringSoftware Architecture, Spring 2015

15

ADD steps

Steps involved in Attribute Driven Design (ADD)

1. Choose the module to decompose

• Start with entire system

• Inputs for this module need to be available

o Constraints, functional and quality requirements

School of Software EngineeringSoftware Architecture, Spring 2015

16

School of Software EngineeringSoftware Architecture, Spring 2015

16

ADD steps

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern

• Instantiate modules and allocate functionality using

multiple views

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

17

School of Software EngineeringSoftware Architecture, Spring 2015

17

Choose the module to decompose

Modules: system → subsystem → submodule

Current design element is the whole system

Constraint for the Garage Door Opener system

• Garage door opener is the system

• One constraint: opener must interoperate with the home

information system (HIS)

School of Software EngineeringSoftware Architecture, Spring 2015

18

School of Software EngineeringSoftware Architecture, Spring 2015

18

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

19

School of Software EngineeringSoftware Architecture, Spring 2015

19

Refine the module: Choose arch. drivers

Architectural drivers: functional and quality requirements

that shape the architecture

• Among the top priority requirements for the module

• To be addressed in the initial decomposition of the system

Drivers for Garage Door Opener system

• Real-time performance

• Modifiability to support product lines

• Online diagnosis supported

School of Software EngineeringSoftware Architecture, Spring 2015

20

School of Software EngineeringSoftware Architecture, Spring 2015

20

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

21

School of Software EngineeringSoftware Architecture, Spring 2015

21

Refine the module: Choose arch. pattern

For each quality requirement there are

• identifiable tactics and patterns to implement them

• each tactic is designed to realize one/more attributes

• the patterns in which the tactics are embedded have impact

on other attributes

• balance between qualities needed

o As composition of tactics is used

We need to identify child modules required to implement

the tactics

School of Software EngineeringSoftware Architecture, Spring 2015

22

School of Software EngineeringSoftware Architecture, Spring 2015

22

Refine the module: Choose arch. pattern

The goal of this step is

• to establish an overall architectural pattern for the module

• Architectural pattern should satisfy drivers

• Architectural pattern is built by “composing” the tactics

selected

• Two factors involved in selecting tactics:

o Architectural drivers themselves

o Side effects of the pattern implementing the tactic on other
requirements

School of Software EngineeringSoftware Architecture, Spring 2015

23

School of Software EngineeringSoftware Architecture, Spring 2015

23

Refine the module: Choose arch. pattern

Example 1: Modifiability at design time

• Increase semantic coherence and information hiding

o Separate responsibilities dealing with user interface,
communication, sensors, diagnosis into their own module

– These modules are called virtual machine.

o The first 3 virtual machines: will vary for the different products to
be derived from the PLA

School of Software EngineeringSoftware Architecture, Spring 2015

24

School of Software EngineeringSoftware Architecture, Spring 2015

24

Refine the module: Choose arch. pattern

Example 2: Performance

• Increase computational efficiency and choose scheduling

policy

o Performance-critical computations made efficient

o Performance-critical computations scheduled to achieve the
timing deadline

School of Software EngineeringSoftware Architecture, Spring 2015

25

School of Software EngineeringSoftware Architecture, Spring 2015

25

Refine the module: Choose arch. pattern

Architectural patterns that utilize tactics to achieve garage

door drivers

School of Software EngineeringSoftware Architecture, Spring 2015

26

School of Software EngineeringSoftware Architecture, Spring 2015

26

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

27

School of Software EngineeringSoftware Architecture, Spring 2015

27

Refine the module: Instantiate modules

Previous step

• We defined the module types of the decomposition

Now

• We instantiate them

Virtual machine manages communication and sensor

interactions

• Software running on top of VM: an application

• One module for each group of functionality – instance of

the module types

School of Software EngineeringSoftware Architecture, Spring 2015

28

School of Software EngineeringSoftware Architecture, Spring 2015

28

Refine the module: Instantiate modules

Our example

• Responsibility for managing obstacle detection and halting

door → performance critical section

o This functionality has deadline

• Management of normal door raising/lowering

o No deadline => non-performance critical section

o Same with diagnosis

• Several responsibilities for VM

o Communication and sensor reading and actuator control

o Results in 2 instances of VM

School of Software EngineeringSoftware Architecture, Spring 2015

29

School of Software EngineeringSoftware Architecture, Spring 2015

29

Refine the module: Instantiate modules

First level decomposition of SGDO

School of Software EngineeringSoftware Architecture, Spring 2015

30

School of Software EngineeringSoftware Architecture, Spring 2015

30

Refine the module: Allocate functionality

Use case for parent module understand distribution of

functionality

Add/remove child modules to fulfill required

functionality

Every use case of parent module representable by a

sequence of responsibilities within child modules

School of Software EngineeringSoftware Architecture, Spring 2015

31

School of Software EngineeringSoftware Architecture, Spring 2015

31

Refine the module: Allocate functionality

User interface

• Recognize user requests and translate them into the form

expected by the raising/lowering door module.

Raising/lowering door module

• Control actuators to raise or lower the door. Stop the door

when it reaches either fully open or closed.

Obstacle detection

• Recognize when an obstacle is detected and either stop the

descent of the door or reverse it.

School of Software EngineeringSoftware Architecture, Spring 2015

32

School of Software EngineeringSoftware Architecture, Spring 2015

32

Refine the module: Allocate functionality

Communication virtual machine

• Manage all communication with HIS.

Sensor/actuator virtual machine

• Manage all interactions with the sensors and actuators.

Scheduler

• Guarantee that the obstacle detector will meet its deadlines.

Diagnosis

• Manage the interactions with HIS.

School of Software EngineeringSoftware Architecture, Spring 2015

33

School of Software EngineeringSoftware Architecture, Spring 2015

33

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

34

School of Software EngineeringSoftware Architecture, Spring 2015

34

Refine the module: Define interfaces of

child modules

Module interface

• Services and properties provided and required

• Documents what others can use and on what they can

depend

Module decomposition view documents

• Producers/consumers on information

• Patterns of interaction requiring modules to provide and

use services

School of Software EngineeringSoftware Architecture, Spring 2015

35

School of Software EngineeringSoftware Architecture, Spring 2015

35

Refine the module: Define interfaces of

child modules

User interface:

• openDoor: send command to Raising/lowering door

module to open garage door

• closeDoor: to close door

• haltDoor: to halt door (manually halt function is available)

Raising/lowering door module

• startOpen: send command to Sensor/actuator virtual

machine module to turn on the actuator and open door.

• startClose: turn on the actuator and close door.

• stop: turn off the actuator and left the door in the current

position

School of Software EngineeringSoftware Architecture, Spring 2015

36

School of Software EngineeringSoftware Architecture, Spring 2015

36

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

37

School of Software EngineeringSoftware Architecture, Spring 2015

37

Refine the module: Verify and refine

Decomposition into modules needs to be verified.

Child modules need preparation for their own

decomposition on second level decomposition.

Done for

• Functional requirements

• Constraints

• Quality requirements

School of Software EngineeringSoftware Architecture, Spring 2015

38

School of Software EngineeringSoftware Architecture, Spring 2015

38

Functional requirements

Child modules have responsibilities

• Derived from functional requirements decomposition

• As use cases for the module

• Split and refine parent use cases

• Example: use cases that initializes the whole system

o Broken into initialization of subsystems

School of Software EngineeringSoftware Architecture, Spring 2015

39

School of Software EngineeringSoftware Architecture, Spring 2015

39

Functional requirements

Case study:

Initial responsibilities

• Open/close door on request

o Locally or remotely

• Stop door when detect obstacle

• Interact with HIS

• Support remote diagnostics

School of Software EngineeringSoftware Architecture, Spring 2015

40

School of Software EngineeringSoftware Architecture, Spring 2015

40

Functional requirements

Case study:

Decomposition of responsibilities

• User interface:

o recognize user requests and translate them into form expected by
the raising/lowering door module

• Raising/lowering door module:

o Control actuators to raise/lower door

o Stop door when fully closed or fully open

• Obstacle detection

School of Software EngineeringSoftware Architecture, Spring 2015

41

School of Software EngineeringSoftware Architecture, Spring 2015

41

Functional requirements

Case study:

Decomposition of responsibilities more

• Communication VM

o Manage communication with HIS

• Sensor/actuator VM

o Manage interaction with sensors and actuators

• Scheduler

o Guarantee deadline

• Diagnosis

o Manage interaction with HIS for diagnosis

School of Software EngineeringSoftware Architecture, Spring 2015

42

School of Software EngineeringSoftware Architecture, Spring 2015

42

Constraints

Constraints of parent module satisfied by

1. Decomposition satisfies the constraints

o Using certain OS

2. Constraint satisfied by single child module

o Special protocol

3. Constraint satisfied by multiple child modules

o Web usage requires two modules (client and server)

School of Software EngineeringSoftware Architecture, Spring 2015

43

School of Software EngineeringSoftware Architecture, Spring 2015

43

Constraints

Case study:

Constraint: communication with HIS is maintained

• Communication virtual machine will recognize if this is

unavailable

• Constraint satisfied by a single child

School of Software EngineeringSoftware Architecture, Spring 2015

44

School of Software EngineeringSoftware Architecture, Spring 2015

44

Quality scenarios (QS)

Need to be refined and assigned to child modules

Possibilities

• QS completely satisfied by decomposition

• QS may be satisfied by decomposition with constraints on

child modules

o Layers and modifiability

• Decomposition neutral with respect to QS

o QS assigned to child modules

• QS not satisfiable by decomposition

o Decomposition reconsidered or reason for this recorded

o Typical trade-offs

School of Software EngineeringSoftware Architecture, Spring 2015

45

School of Software EngineeringSoftware Architecture, Spring 2015

45

Quality scenarios (QS)

Case study:

Device and controls for opening and closing the door are

different for the different products in the product line

• May include controls from within the HIS

• QS is delegated to user interface module

Processor used in different products will differ

• Product architecture for each specific processor should be

directly derivable from the PLA

• QS is delegated to all modules

School of Software EngineeringSoftware Architecture, Spring 2015

46

School of Software EngineeringSoftware Architecture, Spring 2015

46

Quality scenarios (QS)

Case study:

If an obstacle (person/object) is detected by garage door

during descent, it must halt or re-open within 0.1 second

• QS delegated to scheduler and obstacle detection module

Garage door opener should be accessible for diagnosis

and administration from within the HIS

• Using a product-specific diagnosis protocol

• QS split between diagnosis and communication modules

School of Software EngineeringSoftware Architecture, Spring 2015

47

School of Software EngineeringSoftware Architecture, Spring 2015

47

Step outcome

Decomposition of module into children

• Each child has

o Set of responsibilities

o Set of use cases

o Interface

o Quality scenarios

o Collection of constraints

• Enough for next iteration of decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

48

School of Software EngineeringSoftware Architecture, Spring 2015

48

ADD steps

1. Choose the module to decompose

2. Refine the module

• Choose architectural drivers

• Choose architectural pattern that satisfies these drivers

• Instantiate modules and allocate functionality

• Define interfaces of child modules

• Verify and refine use cases and quality scenarios and make

them constraints for child modules

3. Repeat for every module that needs further

decomposition

School of Software EngineeringSoftware Architecture, Spring 2015

49

School of Software EngineeringSoftware Architecture, Spring 2015

49

Iteration progress

Vocabulary of modules and their responsibilities

Variety of use cases and quality scenarios and

understood some of their ramifications

Information needs of modules

• Their interactions

Not decided yet

• Communication language, algorithm for obstacle detection,

etc

School of Software EngineeringSoftware Architecture, Spring 2015

50

School of Software EngineeringSoftware Architecture, Spring 2015

50

Iteration outcome

We defined enough to allocate work teams and give them

charges

• If we design a large system

We can proceed to next iteration and decide on answers

for the questions

• If we design small system

School of Software EngineeringSoftware Architecture, Spring 2015

51

School of Software EngineeringSoftware Architecture, Spring 2015

51

Forming the team structure

When modules fairly stable

• They can be allocated to development teams (existing, new)

• Team structure mirror module decomposition structure

Each team creates its own internal work practices (or adopts a
system-wide set)

• Bulletin boards

• Web pages

• Naming conventions for files

• Configuration control system

Quality assurance and testing procedures set up for each
group

• Coordinate with others

School of Software EngineeringSoftware Architecture, Spring 2015

52

School of Software EngineeringSoftware Architecture, Spring 2015

52

The End

http://house.sohu.com/msgview/2874/1/51168420.html
http://house.sohu.com/msgview/2874/1/51168420.html

