
School of Software Engineering Software Architecture, Spring 2014

1

Software Architecture, Spring 2014 School of Software Engineering

1

Tactics to Achieve Software
Qualities

March 2014
Ying SHEN
SSE, Tongji University

School of Software Engineering Software Architecture, Spring 2014

2

School of Software Engineering Software Architecture, Spring 2014

2

Lecture objectives

This lecture will enable students to
• draw concrete scenario of software quality attributes;
• be familiar with tactics for achieving two types of software

qualities.

School of Software Engineering Software Architecture, Spring 2014

3

School of Software Engineering Software Architecture, Spring 2014

3

Achieving QAs through tactics

A tactic is a design decision that influences the control of
a quality attribute response.

The focus of a tactic is on a single quality attribute
response.
Tactics differ from architectural patterns.

• Tradeoffs are built into the architectural patterns.

School of Software Engineering Software Architecture, Spring 2014

4

School of Software Engineering Software Architecture, Spring 2014

4

Achieving QAs through tactics

Tactics are techniques that an architect can use to
achieve the required quality attributes.
Qualities are achieved via design decisions/tactics.
A system design consists of a collection of decisions.

• Some help control the quality attribute responses.
• Others ensure achievement of functionality.

School of Software Engineering Software Architecture, Spring 2014

5

School of Software Engineering Software Architecture, Spring 2014

5

Achieving QAs through tactics

Tactics to achieve two types of quality attributes:
• Availability
• Modifiability
• …

School of Software Engineering Software Architecture, Spring 2014

6

School of Software Engineering Software Architecture, Spring 2014

6

Achieving QAs through tactics

Tactics to achieve two types of quality attributes:
• Availability
• Modifiability
• …

School of Software Engineering Software Architecture, Spring 2014

7

School of Software Engineering Software Architecture, Spring 2014

7

What is availability?

Availability
• The software is there
• The software is ready to carry out its task

o when one needs it

Failure
• Deviation from intended functional behavior (spec)
• Observable by system users

Failure vs fault
• Fault: event which may cause a failure

School of Software Engineering Software Architecture, Spring 2014

8

School of Software Engineering Software Architecture, Spring 2014

8

Availability general scenario

School of Software Engineering Software Architecture, Spring 2014

9

School of Software Engineering Software Architecture, Spring 2014

9

Sample concrete availability scenario

The heartbeat monitor determines that the server is
nonresponsive during normal operations. The system
informs the operator and continues to operate with no
downtime.

School of Software Engineering Software Architecture, Spring 2014

10

School of Software Engineering Software Architecture, Spring 2014

10

Tactics for availability

Availability tactics are designed to enable a system to
endure system faults so that a service being delivered by
the system remains compliant with its specification.
Goal of availability tactics

• Keep faults from becoming failures or
• bound the effects of the fault and make repair possible.

School of Software Engineering Software Architecture, Spring 2014

11

School of Software Engineering Software Architecture, Spring 2014

11

Tactics for availability

Fault

Fault
Masked
or
Repair
Made

Availability Tactics

Detect Faults Recover from Faults Prevent Faults

Ping/Echo
Monitor
Heartbeat
Timestamp
Sanity
Checking
Condition
Monitoring
Voting
Exception
Detector
Self-Test

Preparation
and Repair

Reinstroduction

Active
Redundancy
Passive
Redundancy
Spare
Exception
Handling
Rollback
Software
Upgrade
Retry
Ignore Faulty
Behavior
Degradation
Reconfiguration

Shadow
State
Resynchronization
Escalating Restart
Non-Stop
Forwarding

Remove from
Service
Transactions
Predictive
Model
Exception
Prevention
Increase
Competence
Set

School of Software Engineering Software Architecture, Spring 2014

12

School of Software Engineering Software Architecture, Spring 2014

12

Fault detection: Ping/echo

Ping/echo: An asynchronous request/response message
pair exchanged between nodes.

• Comp. 1 (often a system monitor) issues a “ping” to comp. 2
• Comp. 1 expects an “echo” from comp. 2
• Answer within predefined time threshold

Usable for a group of components
• Mutually responsible for one task

Usable for client/server
• Tests the server and the communication path

Standard implementations are available for nodes
interconnected via IP.

School of Software Engineering Software Architecture, Spring 2014

13

School of Software Engineering Software Architecture, Spring 2014

13

Fault detection: Monitor

Monitor: A component that is used to monitor the state of
health of various other parts of the system (processors,
I/O, memory, etc)

• Detect failure or congestion in the network

School of Software Engineering Software Architecture, Spring 2014

14

School of Software Engineering Software Architecture, Spring 2014

14

Fault detection: Heartbeat

Heartbeat: A fault detection mechanism that employs a
periodic message exchange between a system monitor
and a process being monitored.

• Comp. 1 emits a “heartbeat” message periodically
• Comp. 2 listens for it
• If heartbeat fails

o Comp. 1 assumed failed
o Fault correcting comp. 3 is notified

Heartbeat can also carry data

School of Software Engineering Software Architecture, Spring 2014

15

School of Software Engineering Software Architecture, Spring 2014

15

Fault detection: Heartbeat

1
2
3
4
5
6

// Each process has its own ID.
var processId = "alpha";
var pubClient = require("redis").createClient();
setInterval(function () {
 pubClient.publish("heartbeat", processId);
}), 100);

School of Software Engineering Software Architecture, Spring 2014

16

School of Software Engineering Software Architecture, Spring 2014

16

Fault detection: Heartbeat

/* Heartbeat messages */
struct heartbeat { // Sent in both directions
 DWORD seqno; // Sequence number of this Heartbeat
};

School of Software Engineering Software Architecture, Spring 2014

17

School of Software Engineering Software Architecture, Spring 2014

17

Fault detection: Voting

Triple modular redundancy (TMR) employs three
components that do the same thing.

• Each component receives identical inputs, and forwards
their output to voting logic.

When an inconsistency occurs, the voter reports a fault.
• It must also decide what output to use (majority voting or

average of outputs).

School of Software Engineering Software Architecture, Spring 2014

18

School of Software Engineering Software Architecture, Spring 2014

18

Fault detection: Voting

Masks failure of a single component.
Voter is a SINGLE POINT OF FAILURE.

School of Software Engineering Software Architecture, Spring 2014

19

School of Software Engineering Software Architecture, Spring 2014

19

Fault detection: Voting

School of Software Engineering Software Architecture, Spring 2014

20

School of Software Engineering Software Architecture, Spring 2014

20

Fault detection: Voting

Replication
• Components are exact clones of each other.

Functional redundancy
• It is intended to address the issue of common-mode failures

(design or implementation faults).

• Components are diversely designed and implemented with the
same output given the same input.

Analytic redundancy
• It allows diversity among the components’ inputs and outputs.

• It is intended to tolerate specification errors by using separate
requirement specifications

School of Software Engineering Software Architecture, Spring 2014

21

School of Software Engineering Software Architecture, Spring 2014

21

Fault detection: Others

Timestamp: used to detect incorrect sequences of events,
primarily in distributed message-passing systems.
Sanity Checking: checks the validity or reasonableness of
a component’s operations or outputs; typically based on a
knowledge of the internal design, the state of the system,
or the nature of the information under scrutiny.
Condition Monitoring: checking conditions in a process or
device, or validating assumptions made during the
design.
Self-test: procedure for a component to test itself for
correct operation.

School of Software Engineering Software Architecture, Spring 2014

22

School of Software Engineering Software Architecture, Spring 2014

22

Fault

Fault
Masked
or
Repair
Made

Availability Tactics

Detect Faults Recover from Faults Prevent Faults

Ping/Echo
Monitor
Heartbeat
Timestamp
Sanity
Checking
Condition
Monitoring
Voting
Exception
Detector
Self-Test

Preparation
and Repair

Reinstroduction

Active
Redundancy
Passive
Redundancy
Spare
Exception
Handling
Rollback
Software
Upgrade
Retry
Ignore Faulty
Behavior
Degradation
Reconfiguration

Shadow
State
Resynchronization
Escalating Restart
Non-Stop
Forwarding

Remove from
Service
Transactions
Predictive
Model
Exception
Prevention
Increase
Competence
Set

School of Software Engineering Software Architecture, Spring 2014

23

School of Software Engineering Software Architecture, Spring 2014

23

Fault recovery

Preparation-and-repair tactics
• They are based on a variety of combinations of retrying a

computation or introducing redundancy.
Reintroduction tactic

• It is where a failed component is reintroduced after it has
been corrected.

School of Software Engineering Software Architecture, Spring 2014

24

School of Software Engineering Software Architecture, Spring 2014

24

Preparation-and-repair: Active redundancy

All redundant components respond to events in parallel.
• All in the same state.

Response from only one component is used.
Downtime: switching time to another up-to-date
component (ms)
Used in client-server config (database system)

• Quick responses are important.
Synchronization

• All messages to any redundant component sent to all
redundant components.

School of Software Engineering Software Architecture, Spring 2014

25

School of Software Engineering Software Architecture, Spring 2014

25

Preparation-and-repair: Active redundancy

School of Software Engineering Software Architecture, Spring 2014

26

School of Software Engineering Software Architecture, Spring 2014

26

Preparation-and-repair: Passive
redundancy

Primary component
• responds to events
• informs standby components of state updates they must

make
Fault occurs:

• System checks if backup sufficiently fresh before resuming
services

Often used in control systems
Periodical switchovers increase availability

School of Software Engineering Software Architecture, Spring 2014

27

School of Software Engineering Software Architecture, Spring 2014

27

Preparation-and-repair: Passive
redundancy

School of Software Engineering Software Architecture, Spring 2014

28

School of Software Engineering Software Architecture, Spring 2014

28

Preparation-and-repair: Spare

Standby spare computing platform configured to replace
many different failed components

• Must be rebooted to appropriate SW config
• Have its state initialized when failure occurs

Checkpoint of system state and state changes to
persistent device periodically.
Downtime: minutes

• Suited for systems having only high-reliability instead of
high-availability.

School of Software Engineering Software Architecture, Spring 2014

29

School of Software Engineering Software Architecture, Spring 2014

29

Preparation-and-repair: Spare

School of Software Engineering Software Architecture, Spring 2014

30

School of Software Engineering Software Architecture, Spring 2014

30

Preparation-and-repair: Others

Exception Handling: dealing with the exception by
reporting it or handling it, potentially masking the fault by
correcting the cause of the exception and retrying.
Rollback: permits the system to revert to a previous
known good state upon the detection of a failure.
Software Upgrade: in-service upgrades to executable
code images in a non-service-affecting manner.
Retry: where a failure is transient retrying the operation
may lead to success.

School of Software Engineering Software Architecture, Spring 2014

31

School of Software Engineering Software Architecture, Spring 2014

31

Preparation-and-repair: Others

Ignore Faulty Behavior: ignoring messages sent from a
source when it is determined that those messages are
spurious.
Degradation: maintains the most critical system functions
in the presence of component failures, dropping less
critical functions.
Reconfiguration: reassigning responsibilities to the
resources left functioning, while maintaining as much
functionality as possible.

School of Software Engineering Software Architecture, Spring 2014

32

School of Software Engineering Software Architecture, Spring 2014

32

Fault

Fault
Masked
or
Repair
Made

Availability Tactics

Detect Faults Recover from Faults Prevent Faults

Ping/Echo
Monitor
Heartbeat
Timestamp
Sanity
Checking
Condition
Monitoring
Voting
Exception
Detector
Self-Test

Preparation
and Repair

Reinstroduction

Active
Redundancy
Passive
Redundancy
Spare
Exception
Handling
Rollback
Software
Upgrade
Retry
Ignore Faulty
Behavior
Degradation
Reconfiguration

Shadow
State
Resynchronization
Escalating Restart
Non-Stop
Forwarding

Remove from
Service
Transactions
Predictive
Model
Exception
Prevention
Increase
Competence
Set

School of Software Engineering Software Architecture, Spring 2014

33

School of Software Engineering Software Architecture, Spring 2014

33

Reintroduction: Shadow

Previously failed component may be run in “shadow”
mode.

• For a while
• To make sure it mimics the behavior of the working

components
• Before restoring it to service

School of Software Engineering Software Architecture, Spring 2014

34

School of Software Engineering Software Architecture, Spring 2014

34

Reintroduction: State resynchronization

Partner to passive and active redundancy
• Restored component upgrades its state before return to

service.
• Active redundancy: checksum, MD5…
• Passive redundancy: checkpoint

School of Software Engineering Software Architecture, Spring 2014

35

School of Software Engineering Software Architecture, Spring 2014

35

Reintroduction: Others

Escalating restart: allows the system to recover from
faults by varying the granularity of the component(s)
restarted and minimizing the level of service affected.
Non-stop forwarding: used to enable graceful degradation
of high-availability systems.

School of Software Engineering Software Architecture, Spring 2014

36

School of Software Engineering Software Architecture, Spring 2014

36

Fault

Fault
Masked
or
Repair
Made

Availability Tactics

Detect Faults Recover from Faults Prevent Faults

Ping/Echo
Monitor
Heartbeat
Timestamp
Sanity
Checking
Condition
Monitoring
Voting
Exception
Detector
Self-Test

Preparation
and Repair

Reinstroduction

Active
Redundancy
Passive
Redundancy
Spare
Exception
Handling
Rollback
Software
Upgrade
Retry
Ignore Faulty
Behavior
Degradation
Reconfiguration

Shadow
State
Resynchronization
Escalating Restart
Non-Stop
Forwarding

Remove from
Service
Transactions
Predictive
Model
Exception
Prevention
Increase
Competence
Set

School of Software Engineering Software Architecture, Spring 2014

37

School of Software Engineering Software Architecture, Spring 2014

37

Fault prevention

Removal from service
• Comp removed from operation to undergo some activities

to prevent anticipated failures
• Exp: rebooting comp to prevent memory leaks

Transactions
• sequential steps bundled together, s.t. the whole bundle can

be undone at once
• Atomic, consistent, isolated, and durable (ACID property)

School of Software Engineering Software Architecture, Spring 2014

38

School of Software Engineering Software Architecture, Spring 2014

38

Fault prevention

Transactions tactic: Two-
Phase commit

• Prevent race condition

School of Software Engineering Software Architecture, Spring 2014

39

School of Software Engineering Software Architecture, Spring 2014

39

Fault prevention: Others

Predictive Model: monitor the state of health of a process
to ensure that the system is operating within nominal
parameters; take corrective action when conditions are
detected that are predictive of likely future faults. 
Exception Prevention: preventing system exceptions from
occurring by masking a fault, or preventing it via smart
pointers, abstract data types, wrappers.
Increase Competence Set: designing a component to
handle more cases—faults—as part of its normal
operation.

School of Software Engineering Software Architecture, Spring 2014

40

School of Software Engineering Software Architecture, Spring 2014

40

Example for availability tactics

School of Software Engineering Software Architecture, Spring 2014

41

School of Software Engineering Software Architecture, Spring 2014

41

Example for availability tactics

School of Software Engineering Software Architecture, Spring 2014

42

School of Software Engineering Software Architecture, Spring 2014

42

Discuss questions

1. Write a concrete availability scenario for a program
like Microsoft Word.

2. Redundancy is often cited as a key strategy for
achieving high availability. Look at the tactics
presented in this chapter and decide how many of
them exploit some form of redundancy and how many
do not.

3. Consider the fault detection tactics (ping/echo,
heartbeat, system monitor, voting, and exception
detection). What are the performance implications of
using these tactics?

School of Software Engineering Software Architecture, Spring 2014

43

School of Software Engineering Software Architecture, Spring 2014

43

Achieving QAs through tactics

Tactics to achieve two types of quality attributes:
• Availability
• Modifiability

School of Software Engineering Software Architecture, Spring 2014

44

School of Software Engineering Software Architecture, Spring 2014

44

What is modifiability?

Modifiability is about change and our interest in it is the
cost and risk of making changes.
To plan for modifiability, an architect has to consider four
questions:

• What can change?
o functions, platform, environment, system qualities, capacity…

• What is the likelihood of the change?
• When is the change made and who makes it?

o implementation, compile, build, configuration setup, execution

• What is the cost of the change?
o The cost of introducing the mechanism(s) and the cost of using it.

School of Software Engineering Software Architecture, Spring 2014

45

School of Software Engineering Software Architecture, Spring 2014

45

Modifiability general scenario

Source of
stimulus

The developer, a system administrator, or an end user.

Stimulus The addition of a function, the modification of an existing function, or
the deletion of a function. Making the system more responsive,
increasing its availability. Accommodating an increasing number of
simultaneous users. changes may happen to accommodate new
technology of some sort, the most common of which is porting the
system to a different type of computer or communication network.

Artifact Specific components or modules, the system's platform, its user
interface, its environment, or another system with which it interoperates.

Environment design time, compile time, build time, initiation time, or runtime.

Response Make the change, test it, and deploy it.

Response
measure

All of the possible responses take time and cost money; time and money
are the most common response measures.

School of Software Engineering Software Architecture, Spring 2014

46

School of Software Engineering Software Architecture, Spring 2014

46

Sample concrete modifiability scenario

The developer wishes to change the user interface by
modifying the code at design time. The modifications are
made with no side effects within three hours.

School of Software Engineering Software Architecture, Spring 2014

47

School of Software Engineering Software Architecture, Spring 2014

47

Coupling

Coupling is the overlap of two modules’ responsibilities.
• It is a measure of interconnection among modules.
• “Strength” of coupling

High coupling is an enemy of modification.
• Components depend on each other.
• Strong coupling: Changes in A → changes in B, C and D.

Changes in B → changes in A, C, and D.

School of Software Engineering Software Architecture, Spring 2014

48

School of Software Engineering Software Architecture, Spring 2014

48

Cohesion

Cohesion is a measure of the relationship among the
responsibilities of a specific module. It measures

• how strongly the responsibilities of a module are related.
• the module’s “unity of purpose”.
• Example: routine ComputeAndDisplayFibonacci vs.

routines ComputeFibonacci and DisplayFibonacci
The higher the cohesion, the lower the probability that a
given change will affect multiple responsibilities.

School of Software Engineering Software Architecture, Spring 2014

49

School of Software Engineering Software Architecture, Spring 2014

49

Coupling and cohesion

A B

D

C

E F

G

Cohesion

Coupling

Module 1 Module 2

Module 3 Module 4

School of Software Engineering Software Architecture, Spring 2014

50

School of Software Engineering Software Architecture, Spring 2014

50

Tactics for modifiability

Parameters motivate modifiability tactics:
• Size of a module
• Coupling
• Cohesion
• Binding time of modification

o Modification made late in the life cycle will cost less.

School of Software Engineering Software Architecture, Spring 2014

51

School of Software Engineering Software Architecture, Spring 2014

51

Tactics for modifiability

Goal: controlling the complexity of making changes, as
well as the time and cost to make changes.

Tactics
to Control
Modifiability Change

Arrives
Change Made within
Time and Budget

School of Software Engineering Software Architecture, Spring 2014

52

School of Software Engineering Software Architecture, Spring 2014

52

Tactics for modifiability

Change Change Made

Modifiability Tactics

Reduce Size
of a Module

Increase
Cohesion

Defer
Binding

Split Module Increase
Semantic
Coherence

Encapsulate
Use an
Intermediary
Restrict
Dependencies
Refactor
Abstract Common
Services

Reduce
Coupling

within Time
and Budget

Arrives

School of Software Engineering Software Architecture, Spring 2014

53

School of Software Engineering Software Architecture, Spring 2014

53

Reduce size of a module: Split module

Refining the module into several smaller modules should
reduce the average cost of future changes.

• High capability → high cost of modification
Criterion for splitting:

• Children module can be modified independently.

A

SAx

Before

A’

SA’x

A’’

SA’’x

SA’’A’

After

Key:
Module

Strength of
coupling

School of Software Engineering Software Architecture, Spring 2014

54

School of Software Engineering Software Architecture, Spring 2014

54

Tactics for modifiability

Change Change Made

Modifiability Tactics

Reduce Size
of a Module

Increase
Cohesion

Defer
Binding

Split Module Increase
Semantic
Coherence

Encapsulate
Use an
Intermediary
Restrict
Dependencies
Refactor
Abstract Common
Services

Reduce
Coupling

within Time
and Budget

Arrives

School of Software Engineering Software Architecture, Spring 2014

55

School of Software Engineering Software Architecture, Spring 2014

55

Increase cohesion: Increase semantic
cohesion

If responsibility A and B in a module do not serve the
same purpose,

• place them in different modules.
The purpose of moving responsibilities from one module
to another is to reduce the likelihood of side effects
affecting other responsibilities in one module.
If some responsibilities are not affected by changes,

• they should be removed from the original module.

School of Software Engineering Software Architecture, Spring 2014

56

School of Software Engineering Software Architecture, Spring 2014

56

Tactics for modifiability

Change Change Made

Modifiability Tactics

Reduce Size
of a Module

Increase
Cohesion

Defer
Binding

Split Module Increase
Semantic
Coherence

Encapsulate
Use an
Intermediary
Restrict
Dependencies
Refactor
Abstract Common
Services

Reduce
Coupling

within Time
and Budget

Arrives

School of Software Engineering Software Architecture, Spring 2014

57

School of Software Engineering Software Architecture, Spring 2014

57

Reduce coupling: Encapsulate

The purpose is to reduce the probability that a change to
one module propagates to other modules

• by introducing an explicit interface.
The interface limits the ways in which external
responsibilities can interact with the module.
Interface should hide details of the module.

School of Software Engineering Software Architecture, Spring 2014

58

School of Software Engineering Software Architecture, Spring 2014

58

Reduce coupling: Encapsulate

A

B C E D

SAB SAC SAD SAE

Key:
Module

Strength of
coupling

School of Software Engineering Software Architecture, Spring 2014

59

School of Software Engineering Software Architecture, Spring 2014

59

Reduce coupling: Encapsulate

Changes in the
architecture:

• An explicit interface
is added.

• Coupling between A
and x → coupling
between A and its
interface.

A

B C E D

SAB SAC SAD SAE

Sinterface A

Key:
Module

Strength of
coupling

Interface

• Strong coupling from A to its
interface; low coupling from
its interface to A.

School of Software Engineering Software Architecture, Spring 2014

60

School of Software Engineering Software Architecture, Spring 2014

60

Reduce coupling: Use an intermediary

An intermediary breaks a dependency.
• Carrying out B requires carrying out A first

The type of intermediary depends on the type of
dependency.

• A is a data producer and B is a data consumer: use a
Publisher-Subscriber intermediary.

• In a shared data repository, separates readers from writers.

School of Software Engineering Software Architecture, Spring 2014

61

School of Software Engineering Software Architecture, Spring 2014

61

Reduce coupling: Use an intermediary

B

A

SAB

SBx

SAx

Before
After

B

A

SA intermediary

SBx

SAx

Intermediary

SB intermediary

School of Software Engineering Software Architecture, Spring 2014

62

School of Software Engineering Software Architecture, Spring 2014

62

Reduce coupling: Restrict dependence

Restrict dependencies is a tactic that restricts the
modules that a given module interacts with or depends
on. It is achieved by

• restricting a module’s visibility;
• authorization.

Examples: layered architecture, wrapper
Presentation

Business Logic

Data Access

Data

School of Software Engineering Software Architecture, Spring 2014

63

School of Software Engineering Software Architecture, Spring 2014

63

Reduce coupling: Refactor

Refactor is a tactic undertaken when two modules are
affected by the same change because they are duplicates
of each other.

• Common responsibilities (and the code that implements
them) are “factor out” of the modules.

• By co-locating common responsibilities, the architect can
reduce coupling.

School of Software Engineering Software Architecture, Spring 2014

64

School of Software Engineering Software Architecture, Spring 2014

64

Reduce coupling: Abstract common
services

In the case where two modules provide similar services, it
may be cost-effective to implement the services just once
in a more general (abstract) form.
Any modification to the common service would then need
to occur just in one place,

• reducing modification cost.

School of Software Engineering Software Architecture, Spring 2014

65

School of Software Engineering Software Architecture, Spring 2014

65

Reduce coupling: Abstract common
services

A’’ and B’’ are unaffected portion of module A and B when
a modification occur.

A

SAx

Before

A’’

SA’’x

B’’

SB’’x

SB’’,A’B’

After

Key:
Module

Strength of
coupling

A’, B’

SA’’,A’B’

SA’B’x

B

SBx

School of Software Engineering Software Architecture, Spring 2014

66

School of Software Engineering Software Architecture, Spring 2014

66

Tactics for modifiability

Change Change Made

Modifiability Tactics

Reduce Size
of a Module

Increase
Cohesion

Defer
Binding

Split Module Increase
Semantic
Coherence

Encapsulate
Use an
Intermediary
Restrict
Dependencies
Refactor
Abstract Common
Services

Reduce
Coupling

within Time
and Budget

Arrives

School of Software Engineering Software Architecture, Spring 2014

67

School of Software Engineering Software Architecture, Spring 2014

67

Defer binding

Letting computers handle a change as much as possible
will reduce the cost of making that change.
The defer bindings are organized based on the system’s
life cycle:

• Compile time:
o Component replacement (e.g. in a build script or makefile)
o Compile-time parameterization
o Aspect-Oriented programming

• Deployment time:
o configuration-time binding

School of Software Engineering Software Architecture, Spring 2014

68

School of Software Engineering Software Architecture, Spring 2014

68

Defer binding

Letting computers handle a change as much as possible
will reduce the cost of making that change.
The defer bindings are organized based on the system’s
life cycle:

• Runtime:
o Runtime registration
o Dynamic lookup (e.g. for services)
o Plug-ins
o Publish-subscribe
o Shared repositories
o Polymorphism

School of Software Engineering Software Architecture, Spring 2014

69

School of Software Engineering Software Architecture, Spring 2014

69

Summary

Modifiability deals with change and the cost in time or
money of making a change.

• To which extent this modification affects other functions or
quality attributes.

Tactics to reduce the cost of making a change include
• making modules smaller,
• increasing cohesion, and
• reducing coupling.
• Deferring binding will also reduce the cost of making a

change.

School of Software Engineering Software Architecture, Spring 2014

70

School of Software Engineering Software Architecture, Spring 2014

70

Discussion questions

1. In a certain metropolitan subway system, the ticket
machines accept cash but do not give change. There
is a separate machine that dispenses change but
does not sell tickets. In an average station there are
six or eight ticket machines for every change machine.
What modifiability tactics do you see at work in this
arrangement? What can you say about availability?

2. The abstract common services tactic is intended to
reduce coupling, but it also might reduce cohesion.
Discuss.

School of Software Engineering Software Architecture, Spring 2014

71

School of Software Engineering Software Architecture, Spring 2014

71

Discussion questions

3. A wrapper is a common aid to modifiability. A wrapper
for a component is the only element allowed to use
that component; every other piece of software uses
the component's services by going through the
wrapper. The wrapper transforms the data or control
information for the component it wraps. For example,
a component may expect input using English
measures but find itself in a system in which all of the
other components produce metric measures. A
wrapper could be employed to translate. What
modifiability tactics does a wrapper embody?

School of Software Engineering Software Architecture, Spring 2014

72

School of Software Engineering Software Architecture, Spring 2014

72

The End

http://house.sohu.com/msgview/2874/1/51168420.html

	Tactics to Achieve Software Qualities
	Lecture objectives
	Achieving QAs through tactics
	Achieving QAs through tactics
	Achieving QAs through tactics
	Achieving QAs through tactics
	What is availability?
	Availability general scenario
	Sample concrete availability scenario
	Tactics for availability
	Tactics for availability
	Fault detection: Ping/echo
	Fault detection: Monitor
	Fault detection: Heartbeat
	Fault detection: Heartbeat
	Fault detection: Heartbeat
	Fault detection: Voting
	Fault detection: Voting
	Fault detection: Voting
	Fault detection: Voting
	Fault detection: Others
	Slide Number 22
	Fault recovery
	Preparation-and-repair: Active redundancy
	Preparation-and-repair: Active redundancy
	Preparation-and-repair: Passive redundancy
	Preparation-and-repair: Passive redundancy
	Preparation-and-repair: Spare
	Preparation-and-repair: Spare
	Preparation-and-repair: Others
	Preparation-and-repair: Others
	Slide Number 32
	Reintroduction: Shadow
	Reintroduction: State resynchronization
	Reintroduction: Others
	Slide Number 36
	Fault prevention
	Fault prevention
	Fault prevention: Others
	Example for availability tactics
	Example for availability tactics
	Discuss questions
	Achieving QAs through tactics
	What is modifiability?
	Modifiability general scenario
	Sample concrete modifiability scenario
	Coupling
	Cohesion
	Coupling and cohesion
	Tactics for modifiability
	Tactics for modifiability
	Tactics for modifiability
	Reduce size of a module: Split module
	Tactics for modifiability
	Increase cohesion: Increase semantic cohesion
	Tactics for modifiability
	Reduce coupling: Encapsulate
	Reduce coupling: Encapsulate
	Reduce coupling: Encapsulate
	Reduce coupling: Use an intermediary
	Reduce coupling: Use an intermediary
	Reduce coupling: Restrict dependence
	Reduce coupling: Refactor
	Reduce coupling: Abstract common services
	Reduce coupling: Abstract common services
	Tactics for modifiability
	Defer binding
	Defer binding
	Summary
	Discussion questions
	Discussion questions
	The End

