
School of Software Engineering
Software Architecture, Spring 2015

1

Software Architecture, Spring 2015 School of Software Engineering

1

Quality Attributes

Ying SHEN

SSE, Tongji University



School of Software Engineering
Software Architecture, Spring 2015

2

School of Software EngineeringSoftware Architecture, Spring 2015

2

Lecture objectives

This lecture will enable students to

• be familiar with different system qualities and examples 

through a real project (ICDE system).



School of Software Engineering
Software Architecture, Spring 2015

3

School of Software EngineeringSoftware Architecture, Spring 2015

3

Architecture and requirements

All requirements encompass the following categories:

• Functional requirements

• Quality attribute requirements

• Constraints



School of Software Engineering
Software Architecture, Spring 2015

4

School of Software EngineeringSoftware Architecture, Spring 2015

4

Functional requirements

Functional requirements state what the system must do, 

and how it must behave or react to runtime stimuli.

Functionality does not determine architecture.

• If functionality is the only requirement, a single monolithic 

module works!

Although functionality is independent of structure, it is 

achieved by assigning responsibilities to architectural 

elements.



School of Software Engineering
Software Architecture, Spring 2015

5

School of Software EngineeringSoftware Architecture, Spring 2015

5

Quality attribute requirements

Quality attribute (QA) requirements are qualifications of 

the functional requirements or of the overall product. 

A quality attribute can be regarded as measuring the 

“goodness” of a product along some dimension of interest 

to a stakeholder.



School of Software Engineering
Software Architecture, Spring 2015

6

School of Software EngineeringSoftware Architecture, Spring 2015

6

Quality attributes

QAs specify how well the system performs its functions:

• How fast must it respond?

• How easy must it be to use?

• How secure does it have to be against attacks?

• How easy should it be to maintain?

Software qualities are not orthogonal.

• A change in structure that improves one quality often 

affects the other qualities.



School of Software Engineering
Software Architecture, Spring 2015

7

School of Software EngineeringSoftware Architecture, Spring 2015

7

Constraints

A constraint is a design decision with zero degrees of 

freedom.

• Use a certain programming language or to reuse a certain 

existing module



School of Software Engineering
Software Architecture, Spring 2015

8

Software Architecture, Spring 2015 School of Software Engineering

8

A Case Study in Quality Attribute

From Essential Software Architecture



School of Software Engineering
Software Architecture, Spring 2015

9

School of Software EngineeringSoftware Architecture, Spring 2015

9

ICDE system

Information Capture and Dissemination Environment 

(ICDE) is a software system for providing intelligent 

assistance to

• financial analysts

• scientific researchers

• intelligence analysts

• analysts in other domains



School of Software Engineering
Software Architecture, Spring 2015

10

School of Software EngineeringSoftware Architecture, Spring 2015

10

ICDE system

ICDE automatically captures and stores data of actions 

performed by a user when operating a workstation.

Example: When a user performing Google search, ICDE 

will store in a database:

• The search query string

• List of returned pages displayed in the browser

Data can be later used by 3rd parties 

• to offer intelligent help

• to find potentially useful details overlooked by users



School of Software Engineering
Software Architecture, Spring 2015

11

School of Software EngineeringSoftware Architecture, Spring 2015

11

ICDE schematic



School of Software Engineering
Software Architecture, Spring 2015

12

School of Software EngineeringSoftware Architecture, Spring 2015

12

ICDE use cases



School of Software Engineering
Software Architecture, Spring 2015

13

School of Software EngineeringSoftware Architecture, Spring 2015

13

ICDE version 1.0

Analyst Workstation

Data Collection

Data Analysis

Data Store

ICDE Version 1.0 application architecture



School of Software Engineering
Software Architecture, Spring 2015

14

School of Software EngineeringSoftware Architecture, Spring 2015

14

Data collection

The collection component comprises a number of loosely 

coupled processes that transparently track the user’s 

relevant activities and store them in the Data Store.

http://www.shutterstock.com/subscribe.mhtml
http://www.shutterstock.com/subscribe.mhtml


School of Software Engineering
Software Architecture, Spring 2015

15

School of Software EngineeringSoftware Architecture, Spring 2015

15

Data store

This component comprises a commercial-off-the-shelf 

(COTS) relational database. 

The relational database stores information in various 

tables regarding the user activities, with timestamps 

added so that the order of events can be reconstructed.



School of Software Engineering
Software Architecture, Spring 2015

16

School of Software EngineeringSoftware Architecture, Spring 2015

16

Data analysis

A graphical user interface (GUI) based tool supports a set 

of queries on the data store.



School of Software Engineering
Software Architecture, Spring 2015

17

School of Software EngineeringSoftware Architecture, Spring 2015

17

ICDE version 1.0

ICDE version 1.0 in production

• Basically a complex, raw information capture tool, GUI for 

looking at captured data

• 2 tier client-server, single machine deployment

• Java, Perl, SQL, 

• Programmatic access to data through very complex SQL (38 

tables, 46 views)

ICDE v1.0 was only deployed in a small user trial involving a 

few users.

This deployment successfully tested the software functionality 

and demonstrated the concepts of data capture and storage.



School of Software Engineering
Software Architecture, Spring 2015

18

School of Software EngineeringSoftware Architecture, Spring 2015

18

ICDE version 2.0

ICDE v2.0 scheduled for development in 12 month 

timeframe

• Fixed schedule, budget

Major changes to:

• Enhance data capture tools (GUI)

• Support 3rd party tool integration, testing, data access and 

large production scale deployments (150’s of users)



School of Software Engineering
Software Architecture, Spring 2015

19

School of Software EngineeringSoftware Architecture, Spring 2015

19

ICDE version 2.0

Business goals:



School of Software Engineering
Software Architecture, Spring 2015

20

School of Software EngineeringSoftware Architecture, Spring 2015

20

Architecturally significant requirements for 

ICDE v2.0

ICDE project requirements:
 Heterogeneous platform support for access to ICDE data
 Instantaneous event notification (local/distributed)
 Over the Internet, secure ICDE data access
 Ease of programmatic data access

ICDE project team requirements:
 Insulate 3rd party projects and ICDE tools from database evolution
 Scalable infrastructure to support large, shared deployments
 Minimize license costs for a deployment

Unknowns
 Minimize dependencies, making unanticipated changes potentially 

easier



School of Software Engineering
Software Architecture, Spring 2015

21

School of Software EngineeringSoftware Architecture, Spring 2015

21

Summary

ICDE is a reasonably complex system

It will be used to illustrate concepts during the remainder 

of this course



School of Software Engineering
Software Architecture, Spring 2015

22

School of Software EngineeringSoftware Architecture, Spring 2015

22

What are quality attributes

Often know as –ilities

• Reliability

• Availability

• Portability

• Scalability

• Performance 



School of Software Engineering
Software Architecture, Spring 2015

23

School of Software EngineeringSoftware Architecture, Spring 2015

23

Quality attribute specification

Architects are often told:

• “My application must be fast/secure/scale”

Far too imprecise to be any use at all

Quality attributes (QAs) must be made precise/measurable 

for a given system design, e.g.

• “It must be possible to scale the deployment from an initial 

100 geographically dispersed user desktops to 10,000 

without an increase in effort/cost for installation and 

configuration.”



School of Software Engineering
Software Architecture, Spring 2015

24

School of Software EngineeringSoftware Architecture, Spring 2015

24

QAs of ICDE system

Performance

Scalability

Modifiability

Security

Availability

Integration

Any other quality attributes?



School of Software Engineering
Software Architecture, Spring 2015

25

School of Software EngineeringSoftware Architecture, Spring 2015

25

Performance

A performance quality requirement defines a:

• metric of amount of work performed in unit time

• deadline that must be met

Enterprise applications often have strict performance 

requirements, e.g.

• 1000 transactions per second

• 3 second average latency for a request

Performance is fundamental for software system.



School of Software Engineering
Software Architecture, Spring 2015

26

School of Software EngineeringSoftware Architecture, Spring 2015

26

Performance - Throughput

Measure of the amount of work an application must 

perform in unit time

• Transactions per second

• Messages per minute

Is required throughput:

• Average?

• Peak?

Many system have low average but high peak throughput 

requirements



School of Software Engineering
Software Architecture, Spring 2015

27

School of Software EngineeringSoftware Architecture, Spring 2015

27

Performance - Response time

Measure of the latency an application exhibits in 

processing a request

Usually measured in (milli)seconds

Often an important metric for users

Is required response time:

• Guaranteed?

• Average?

E.g. 95% of responses in sub-4 seconds, and

all within 10 seconds



School of Software Engineering
Software Architecture, Spring 2015

28

School of Software EngineeringSoftware Architecture, Spring 2015

28

Performance - Deadlines

‘Something must be completed before some specified 

time’

• Payroll system must complete by 2 am so that electronic 

transfers can be sent to bank

• Weekly accounting run must complete by 6 am Monday so 

that figures are available to management

Deadlines often associated with batch jobs in IT systems.



School of Software Engineering
Software Architecture, Spring 2015

29

School of Software EngineeringSoftware Architecture, Spring 2015

29

ICDE performance issues

Response time:

• Overheads of trapping user events must be imperceptible 

to ICDE users

Solution for ICDE client:

• Decouple user event capture from storage using a queue

5. Write event to 
ICDE database queue

4. Read event 
from queue

2. Write event 
to queue

1. Trap user event

3. Return to user thread



School of Software Engineering
Software Architecture, Spring 2015

30

School of Software EngineeringSoftware Architecture, Spring 2015

30

Scalability

“How well a solution to some problem will work when the 

size of the problem increases.”

4 common scalability issues in IT systems:

• Request load

• Connections

• Data size

• Deployments



School of Software Engineering
Software Architecture, Spring 2015

31

School of Software EngineeringSoftware Architecture, Spring 2015

31

Scalability – Request load

How does an 100 tps application behave when 

simultaneous request load grows? E.g.

• From 100 to 1000 requests per second?

Ideal solution, without additional hardware capacity:

• As the load increases, throughput remains constant (i.e. 

100 tps), and response time per request increases only 

linearly (i.e. 10 seconds).



School of Software Engineering
Software Architecture, Spring 2015

32

School of Software EngineeringSoftware Architecture, Spring 2015

32

Scalability – Add more hardware …

Application

Application

Application Application Application

CPU

Scale-up:

Single application instance is

executed on a multiprocessor

machine

Scale-out: 

Application replicated on

different machines



School of Software Engineering
Software Architecture, Spring 2015

33

School of Software EngineeringSoftware Architecture, Spring 2015

33

Scalability - Reality

Adding more hardware should improve performance:

• Scalability must be achieved without modifications to 

application architecture

Reality as always is different!

Applications will exhibit a decrease in throughput and a 

subsequent exponential increase in response time.

• Increased load causes increased contention for resources 

such as CPU, network and memory

• Each request consumes some additional resource (buffer 

space, locks, and so on) in the application, and eventually 

these are exhausted



School of Software Engineering
Software Architecture, Spring 2015

34

School of Software EngineeringSoftware Architecture, Spring 2015

34

Scalability – J2EE example

I.Gorton, A Liu, Performance Evaluation of Alternative Component
Architectures for Enterprise JavaBean Applications, in IEEE Internet
Computing, vol.7, no. 3, pages 18-23, 2003.



School of Software Engineering
Software Architecture, Spring 2015

35

School of Software EngineeringSoftware Architecture, Spring 2015

35

Scalability – Connections

What happens if number of simultaneous connections to 

an application increases

• If each connection consumes a resource?

• Exceed maximum number of connections?

ISP example:

• Each user connection spawned a new process

• Virtual memory on each server exceeded at 2000 users

• Needed to support 100Ks of users

• Tech crash ….



School of Software Engineering
Software Architecture, Spring 2015

36

School of Software EngineeringSoftware Architecture, Spring 2015

36

Scalability – Data size

How does an application behave as the data it processes 

increases in size?

• Chat application sees average message size double?

• Database table size grows from 1 million to 20 million 

rows?

• Image analysis algorithm processes images of 100MB 

instead of 1MB?

Can application/algorithms scale to handle increased 

data requirements?



School of Software Engineering
Software Architecture, Spring 2015

37

School of Software EngineeringSoftware Architecture, Spring 2015

37

Scalability – Deployment

How does effort to install/deploy an application increase 

as installation base grows?

• Install new users?

• Install new servers?

Solutions typically revolve around automatic 

download/installation

• E.g. downloading applications from the Internet



School of Software Engineering
Software Architecture, Spring 2015

38

School of Software EngineeringSoftware Architecture, Spring 2015

38

Scalability thoughts and ICDE

Scalability often overlooked.

• Major cause of application failure

• Hard to predict

• Hard to test/validate

• Reliance on proven designs and technologies is essential

For ICDE - application should be capable of handling a 

peak load of 150 concurrent requests from ICDE clients.

• Relatively easy to simulate user load to validate this



School of Software Engineering
Software Architecture, Spring 2015

39

School of Software EngineeringSoftware Architecture, Spring 2015

39

Modifiability

Modifications to a software system during its lifetime are 

a fact of life.

Modifiable systems are easier to change/evolve.

Modifiability should be assessed in context of how a 

system is likely to change

• No need to facilitate changes that are highly unlikely to 

occur

• Over-engineering!



School of Software Engineering
Software Architecture, Spring 2015

40

School of Software EngineeringSoftware Architecture, Spring 2015

40

Modifiability

Modifiability measures how easy it may be to change an 

application to cater for new (non-)functional requirements.

• ‘may’ – nearly always impossible to be certain

• Must estimate cost/effort

Modifiability measures are only relevant in the context of 

a given architectural solution.

• Components

• Relationships

• Responsibilities



School of Software Engineering
Software Architecture, Spring 2015

41

School of Software EngineeringSoftware Architecture, Spring 2015

41

Modifiability scenarios

Provide access to the application through firewalls in 

addition to existing “behind the firewall” access.

Incorporate new features for self-service check-out 

kiosks.

The COTS speech recognition software vendor goes out 

of business and we need to replace this component.

The application needs to be ported from Linux to the 

Microsoft Windows platform.



School of Software Engineering
Software Architecture, Spring 2015

42

School of Software EngineeringSoftware Architecture, Spring 2015

42

Modifiability analysis

Impact is rarely easy to quantify.

The best possible is a:

• Convincing impact analysis of changes needed

• A demonstration of how the solution can accommodate the 

modification without change.

Minimizing dependencies increases modifiability

• Changes isolated to single components likely to be less 

expensive than those that cause ripple effects across the 

architecture.



School of Software Engineering
Software Architecture, Spring 2015

43

School of Software EngineeringSoftware Architecture, Spring 2015

43

Modifiability for ICDE

The range of events trapped and stored by the ICDE 

client to be expanded.

Third party tools to communicate new message types.

Change database technology used

Change server technology used



School of Software Engineering
Software Architecture, Spring 2015

44

School of Software EngineeringSoftware Architecture, Spring 2015

44

Security

Difficult, specialized quality attribute:

• Lots of technology available

• Requires deep knowledge of approaches and solutions

Security is a multi-faceted quality …



School of Software Engineering
Software Architecture, Spring 2015

45

School of Software EngineeringSoftware Architecture, Spring 2015

45

Security

Authentication: 

• Applications can verify the identity of their users and other 
applications with which they communicate.

Authorization: 

• Authenticated users and applications have defined access rights to the 
resources of the system.

Encryption: 

• The messages sent to/from the application are encrypted.

Integrity: 

• This ensures the contents of a message are not altered in transit.

Non-repudiation: 

• The sender of a message has proof of delivery and the receiver is 
assured of the sender’s identity. This means neither can subsequently 
refute their participation in the message exchange.



School of Software Engineering
Software Architecture, Spring 2015

46

School of Software EngineeringSoftware Architecture, Spring 2015

46

Security approaches

SSL

PKI

Web Services security

JAAS

Operating system security

Database security

Etc etc



School of Software Engineering
Software Architecture, Spring 2015

47

School of Software EngineeringSoftware Architecture, Spring 2015

47

ICDE security requirements

Authentication of ICDE users and third party ICDE tools 

to ICDE server.

Encryption of data to ICDE server from 3rd party 

tools/users executing remotely over an insecure network



School of Software Engineering
Software Architecture, Spring 2015

48

School of Software EngineeringSoftware Architecture, Spring 2015

48

Availability

Key requirement for most IT applications

Measured by the proportion of the required time it is 

usable. E.g.

• 100% available during business hours

• No more than 2 hours scheduled downtime per week

• 24*7*52 (100% availability)

Related to an application’s reliability

• Unreliable applications suffer poor availability

Related to recoverability



School of Software Engineering
Software Architecture, Spring 2015

49

School of Software EngineeringSoftware Architecture, Spring 2015

49

Availability

Period of loss of availability determined by:

• Time to detect failure

• Time to correct failure

• Time to restart application

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅



School of Software Engineering
Software Architecture, Spring 2015

50

School of Software EngineeringSoftware Architecture, Spring 2015

50

Availability

High availability typically refers to designs targeting 

availability of 99.999 percent (“5 nines”) or greater.

Strategies for high availability:

• Eliminate single points of failure

• Replication and failover

• Automatic detection and restart



School of Software Engineering
Software Architecture, Spring 2015

51

School of Software EngineeringSoftware Architecture, Spring 2015

51

Availability

System Availability Requirements

Availability Downtime/90 Days Downtime/Year

99.0% 21 hours, 36 minutes 3 days, 15.6 hours

99.9% 2 hours, 10 minutes 8 hours, 0 minutes, 46 seconds

99.99% 12 minutes, 58 seconds 52 minutes, 34 seconds

99.999% 1 minute, 18 seconds 5 minutes, 15 seconds

99.999% 8 seconds 32 seconds



School of Software Engineering
Software Architecture, Spring 2015

52

School of Software EngineeringSoftware Architecture, Spring 2015

52

Availability for ICDE

Achieve 100% availability during business hours

Plenty of scope for downtime for system upgrade, backup 

and maintenance.

Include mechanisms for component replication and 

failover



School of Software Engineering
Software Architecture, Spring 2015

53

School of Software EngineeringSoftware Architecture, Spring 2015

53

Integration

Ease with which an application can be incorporated into a 

broader application context

• Use component in ways that the designer did not originally 

anticipate

Typically achieved by:

• Programmatic APIs

• Data integration



School of Software Engineering
Software Architecture, Spring 2015

54

School of Software EngineeringSoftware Architecture, Spring 2015

54

Integration strategies

Data – expose application data for access by other 

components

API – offers services to read/write application data 

through an abstracted interface

Each has strengths and weaknesses …



School of Software Engineering
Software Architecture, Spring 2015

55

School of Software EngineeringSoftware Architecture, Spring 2015

55

ICDE integration needs

Revolve around the need to support third party analysis 

tools.

Well-defined and understood mechanism for third party 

tools to access data in the ICDE data store.



School of Software Engineering
Software Architecture, Spring 2015

56

School of Software EngineeringSoftware Architecture, Spring 2015

56

Design trade-offs

QAs are rarely orthogonal

• They interact, affect each other

• Highly secure system may be difficult to integrate

• Highly available application may trade-off lower performance for 

greater availability

• High performance application may be tied to a given platform, and 

hence not be easily portable

Architects must create solutions that makes sensible design 

compromises

• not possible to fully satisfy all competing requirements

• Must satisfy all stakeholder needs

• This is the difficult bit!



School of Software Engineering
Software Architecture, Spring 2015

57

School of Software EngineeringSoftware Architecture, Spring 2015

57

Summary

QAs are part of an application’s nonfunctional 

requirements

Many QAs

Architect must decide which are important for a given 

application

• Understand implications for application

• Understand competing requirements and tradeoffs



School of Software Engineering
Software Architecture, Spring 2015

58

School of Software EngineeringSoftware Architecture, Spring 2015

58

Discussion question

1. How many other qualities of software can you name 
that were not covered in this lecture? With which other 
qualities does it most often interact?



School of Software Engineering
Software Architecture, Spring 2015

59

School of Software EngineeringSoftware Architecture, Spring 2015

59

Misc. quality attributes

Portability

• Can an application be easily executed on a different 

software/hardware platform to the one it has been 

developed for?

Testability

• How easy or difficult is an application to test?

Supportability

• How easy an application is to support once it is deployed?

Usability


