
School of Software EngineeringSoftware Architecture, Spring 2015

1

School of Software Engineering

1

What is Software Architecture and

Why It is important

Ying Shen

SSE, Tongji University

School of Software EngineeringSoftware Architecture, Spring 2015

2

School of Software Engineering

2

Architecting a dog house

Can be built by one person

Requires

Minimal modeling

Simple process

Simple tools

School of Software EngineeringSoftware Architecture, Spring 2015

3

School of Software Engineering

3

Architecting a house

Built most efficiently and

timely by a team

Requires

Modeling

Well-defined process

Power tools

School of Software EngineeringSoftware Architecture, Spring 2015

4

School of Software Engineering

4

Why we need software architecture

Why not just start coding and let things turn out somehow.

• Software is increasingly complex.

• Software is evolving, reused in new contexts.

• The promise of off-the-shelf components with easy reuse

o We need to adapt, wrap or modify the off-the-shelf components.

o Too many components in software products.

o Large number of connections/dependencies between these
components.

How to make sure that SW development reaches the

intended goals of a project.

School of Software EngineeringSoftware Architecture, Spring 2015

5

School of Software Engineering

5

Why we need software architecture

Software is complex:

• >10KLOC (KLOC = 1000 lines of code): internal projects,

tools, hobby projects, minimum viable products.

• >100KLOC: small products, mobile apps.

• >1MLOC: operating systems, native frameworks, typical

desktop software applications, server side applications,

typical everyday product.

School of Software EngineeringSoftware Architecture, Spring 2015

6

School of Software Engineering

6

Why we need software architecture

How to understand software that has >1MLOC?

How to reach >1MLOC and still understand software?

How to reach >1MLOC without excessive complexity?

How a >1MLOC software evolves into the next version?

How a >1MLOC software or its components are reused?

School of Software EngineeringSoftware Architecture, Spring 2015

7

School of Software Engineering

7

Dimensions of software complexity

Higher technical complexity
- Embedded, real-time, distributed, fault-tolerant
- Custom, unprecedented, architecture reengineering
- High performance

Lower technical complexity
- Mostly 4GL, or component-based
- Application reengineering
- Interactive performance

Higher
management
complexity

- Large scale
- Contractual
- Many stake holders
- “Projects”

Lower
management
complexity

- Small scale
- Informal
- Single stakeholder
- “Products”

Defense
MIS System

Defense
Weapon SystemTelecom

Switch

CASE Tool

National Air Traffic
Control System

Enterprise IS
(Family of IS
Applications)

Commercial
Compiler

Business
Spreadsheet

IS Application
Distributed Objects

(Order Entry)

Small Scientific
Simulation

Large-Scale
Organization/Entity

Simulation

An average software project:
- 5-10 people

- 10-15 month duration
- 3-5 external interfaces
- Some unknowns & risks

Embedded
Automotive

Software

IS Application
GUI/RDB

(Order Entry)

School of Software EngineeringSoftware Architecture, Spring 2015

8

School of Software Engineering

8

Architectural description has a natural position

in system design and implementation

Elements of a complete software system

User Model

Requirement

Architecture

Code

Executable

User view of problem

Software view of problem

Modules and connections

Algorithms & data structures

Data layouts, memory maps

School of Software EngineeringSoftware Architecture, Spring 2015

9

School of Software Engineering

9

What is Software Architecture?

Definition from IEEE:

Architecture is the fundamental organization of a system

embodied in its components, their relationships to each other,

and to the environment, and the principles guiding its design

and evolution.

[IEEE 1471]

School of Software EngineeringSoftware Architecture, Spring 2015

10

School of Software Engineering

10

What is Software Architecture?

Definition from Kruchten: Rational Unified Process, 1999:

An architecture is the set of significant decisions about the

organization of a software system, the selection of structural

elements and their interfaces by which the system is composed,

together with their behavior as specified in the collaborations

among those elements, the composition of these elements into

progressively larger subsystems, and the architectural style

that guides this organization -- these elements and their

interfaces, their collaborations, and their composition.

School of Software EngineeringSoftware Architecture, Spring 2015

11

School of Software Engineering

11

What is Software Architecture?

Definition from Bass et al.: SA in practice, 2012:

The software architecture of a system is the set of structures

needed to reason about the system, which comprise software

elements, relations among them, and properties of both.

The exact structures to consider and the ways to

represent them vary according to engineering goals.

School of Software EngineeringSoftware Architecture, Spring 2015

12

School of Software Engineering

12

Implications of the definition

Architecture is a set of software structures

• Systems have many structures.

o Module structures

o Component-and-connector (C&C) structure: runtime, dynamic
structure. Component is a runtime entity.

o Allocation structures

• No single structure can be the architecture.

School of Software EngineeringSoftware Architecture, Spring 2015

13

School of Software Engineering

13

Implications of the definition

Architecture is a set of software structures

• The set of candidate structures is not fixed or prescribed

o whatever is useful for analysis, communication, or understanding.

• Not all structures of the software are architectural

o It should support reasoning about the system and the system’s
properties

School of Software EngineeringSoftware Architecture, Spring 2015

14

School of Software Engineering

14

Implications of the definition

Architecture is an abstraction

• Architecture defines elements and how they interact.

• Architecture suppresses purely local information about

components

o Private details are not architectural.

School of Software EngineeringSoftware Architecture, Spring 2015

15

School of Software Engineering

15

Implications of the definition

Every software system has a software architecture.

• Every system is composed of elements and relationships

among them.

• In the simplest case, a system is composed of a single

element, related only to itself.

Just having an architecture is different from having an
architecture that is known to everyone.

• architecture versus specification of the architecture

• architecture recovery and conformance

School of Software EngineeringSoftware Architecture, Spring 2015

16

School of Software Engineering

16

Implications of the definition

Architecture includes behavior

• This means that box-and-line drawings alone are not

architectures, but a starting point.

• You might imagine the behavior of a box labeled

“database” or “executive.”

• You need to add specifications and properties.

School of Software EngineeringSoftware Architecture, Spring 2015

17

School of Software Engineering

17

Three kinds of structures

Module structures embody decisions as to how the

system is to be structured as a set of code or data units

that have to be constructed or procured.

• The elements are modules such as classes, layers.

• Focus on the functional responsibility of each module, not

emphasize runtime issue.

School of Software EngineeringSoftware Architecture, Spring 2015

18

School of Software Engineering

18

Three kinds of structures

Useful module structures:

• Decomposition structure

 Units: modules

 Relations: is a submodule of

 Used for: resource
allocation and protect
structuring and planning;
information hiding,
encapsulation;
configuration control

 Affected attributes include:
modifiability

School of Software EngineeringSoftware Architecture, Spring 2015

19

School of Software Engineering

19

Three kinds of structures

Useful module structures:

• Uses structure

 Units: modules

 Relations: uses, i.e. requires the correct presence of

 Used for: engineering subsets, engineering extensions

 Affected attributes include: “subsetability”, extensibility

School of Software EngineeringSoftware Architecture, Spring 2015

20

School of Software Engineering

20

Three kinds of structures

Useful module structures:

• Layer structure

 Units: layers

 Relations: requires the
correct presence of, uses the
services of, provides
abstraction to

 Used for: incremental
development, implementing
systems on top of “virtual
machines”

 Affected attributes include:
portability

School of Software EngineeringSoftware Architecture, Spring 2015

21

School of Software Engineering

21

Three kinds of structures

Useful module structures:

• Class (or generalization) structure

 Units: classes, objects

 Relations: inherits from or is an
instance of

 Used for: in object-oriented design
systems, factoring out commonality;
planning extensions of functionality

 Affected attributes include:
modifiability and extensibility

School of Software EngineeringSoftware Architecture, Spring 2015

22

School of Software Engineering

22

Three kinds of structures

Useful module structures:

• Data model

 Units: data entities

 Relations: {one, many}-to-{one, many}, generalizes, specializes

 Used for: engineering global data structures for consistency and
performance

 Affected attributes include: modifiability, performance

School of Software EngineeringSoftware Architecture, Spring 2015

23

School of Software Engineering

23

Three kinds of structures

Module structures help answer questions:

 What is the primary functional responsibility assigned to each module?

 What other software elements is a module allowed to use?

 What other software does it actually use and depend on?

 What modules are related to other modules by generalization or

specialization (i.e., inheritance) relationships?

Examining a system's module structures is an excellent

way to reason about a system's modifiability.

School of Software EngineeringSoftware Architecture, Spring 2015

24

School of Software Engineering

24

Three kinds of structures

Component-and-connector structures embody

decisions as to how the system is to be structured as a

set of elements that have runtime behavior (components)

and interactions (connectors).

• The elements are runtime components (such as services,

peers, clients, servers, filters) and connectors (such as call-

return, process synchronization operators, pipes).

School of Software EngineeringSoftware Architecture, Spring 2015

25

School of Software Engineering

25

Three kinds of structures

Useful C&C structures:

• Service structure

 Units: services, ESB,
registry, others

 Relations: runs
concurrently with,
may run concurrently
with, excludes,
precedes, etc.

 Used for: scheduling
analysis, performance
analysis

 Affected attributes
include:
lnteroperability,
modifiability

School of Software EngineeringSoftware Architecture, Spring 2015

26

School of Software Engineering

26

Three kinds of structures

Useful C&C structures:

• Concurrency structure

 Units: processes, threads

 Relations: can run in parallel

 Used for: identifying locations where resource contention exists, or
where threads may fork, join, be created, or be killed

 Affected attributes include: performance, availability

School of Software EngineeringSoftware Architecture, Spring 2015

27

School of Software Engineering

27

Three kinds of structures

C&C structures help answer questions:

 What are the major executing components and how do they interact at

runtime?

 What are the major shared data stores?

 Which parts of the system are replicated?

 How does data progress through the system?

 What parts of the system can run in parallel?

 Can the system's structure change as it executes and, if so, how?

They are crucially important for reasoning about the

system's runtime properties such as performance,

security, availability.

School of Software EngineeringSoftware Architecture, Spring 2015

28

School of Software Engineering

28

Three kinds of structures

Allocation structures define how the elements from

C&C or module structures map onto things that are not

software (such as hardware, file systems, development

teams, etc.).

School of Software EngineeringSoftware Architecture, Spring 2015

29

School of Software Engineering

29

Three kinds of structures

Useful allocation structures:

• Deployment structure

 Units: software elements (usually a
process from a C&C view) and
hardware entities (processors)

 Relations: allocated-to, migrates-to

 Used for: performance, availability,
security analysis

 Affected attributes include:
performance, data integrity,
security, and availability

School of Software EngineeringSoftware Architecture, Spring 2015

30

School of Software Engineering

30

Three kinds of structures

Useful allocation structures:

• Implementation structure

 Units: software elements
(usually modules), file
structure

 Relations: stored in

 Used for: configuration
control, integration, test
activities

 Affected attributes include:
development efficiency

School of Software EngineeringSoftware Architecture, Spring 2015

31

School of Software Engineering

31

Three kinds of structures

Useful allocation structures:

• Work assignment structure

 Units: modules and
organizational units

 Relations: assigned to

 Used for: Project
management, best use of
expertise and available
resources, management of
commonality

 Affected attributes include:
development efficiency

School of Software EngineeringSoftware Architecture, Spring 2015

32

School of Software Engineering

32

Three kinds of structures

Allocation structures help answer questions:

 What processor does each software element execute on?

 In what directories or files is each element stored during development,

testing, and system building?

 What is the assignment of each software element to development

teams?

School of Software EngineeringSoftware Architecture, Spring 2015

33

School of Software Engineering

33

Relationship between structures

Each of these structures provides a different perspective

and design handle on a system.

They are not independent. Elements of one structure will

be related to elements of other structures.

Two views of a client-server system

System

Key: Module

Client

Server

School of Software EngineeringSoftware Architecture, Spring 2015

34

School of Software Engineering

34

Which structures to choose?

Fewer is better.

You should think about how the various structures

available provide insight and leverage into the system's

most important quality attributes, and then choose the

ones that will play the best role in delivering those

attributes.

School of Software EngineeringSoftware Architecture, Spring 2015

35

School of Software Engineering

35

Architectural structures summary

Structures are related to each other in complicated ways.

In some systems, different structures collapse into a

single one. (For example, process structure may be the

same as module structure for extremely small systems.)

Lesson: Choose the structures that are useful to the

system being built and to the achievement of qualities

that are important to you.

School of Software EngineeringSoftware Architecture, Spring 2015

36

School of Software Engineering

36

Structures and views

Human body

skeletal vascular X-ray

Physiological Structures

School of Software EngineeringSoftware Architecture, Spring 2015

37

School of Software Engineering

37

Structures and views

In a house, there are plans for

• rooms

• electrical wiring

• plumbing

• ventilation

Each of these constitutes a “view” of the house.

• used by different people

• used to achieve different qualities in the house

• serves as a description and prescription.

So it is with software architecture.

School of Software EngineeringSoftware Architecture, Spring 2015

38

School of Software Engineering

38

Structures and views

A structure is the set of elements existing in software or

hardware.

A view is a representation of a coherent set of

architectural elements.

• It consists of a representation of a set of elements and the

relations among them.

A view is a representation of a structure.

• Module view vs. module structure

School of Software EngineeringSoftware Architecture, Spring 2015

39

School of Software Engineering

39

Views

A view is a representation of a
set of architectural elements
and the relations associated
with them.

All information

Some information

School of Software EngineeringSoftware Architecture, Spring 2015

40

School of Software Engineering

40

Views

An architecture is a very complicated construct -- too
complicated to be seen all at once.

Views are a way to manage complexity.

• 1974: Parnas observed that software is composed of many
structures

• 1992: Perry and Wolf recognize that, similar to buildings
(with plumbing and electrical and wall diagrams), different
views of a system are required.

• 1995: Kruchten defined the “4+1 views” approach to
software architecture.

• 2000: Hofmeister, Nord, and Soni defined the “Siemens
Four Views” approach to software.

School of Software EngineeringSoftware Architecture, Spring 2015

41

School of Software Engineering

41

Why is architecture important?

Architecture is important for the following reasons:

1. Inhibiting or enabling a system’s quality attributes

2. Reasoning about and managing change

3. Enhancing communication among stakeholders

4. Carrying earliest design decisions about a system

5. Defining constraints on an implementation

6. Influencing the organizational structure

7. Supplying a transferable, reusable model

….

School of Software EngineeringSoftware Architecture, Spring 2015

42

School of Software Engineering

42

Inhibiting or enabling a system’s quality

attributes

For example:

The architecture influences qualities, but does not

guarantee them.

If you desire Examine

performance time-based behavior of elements, their

use of shared resources, inter-element

communication

security inter-element communication,

specialized components (e. g.,

authorization mechanism)

scalability localization of resources, hard-coding

reusability inter-component coupling

School of Software EngineeringSoftware Architecture, Spring 2015

43

School of Software Engineering

43

Reasoning about and managing change

An architecture helps reason about and manage change.

• important since  80% of effort in systems occurs after

deployment

Architecture divides all changes into three classes:

• local: modifying a single component

• non-local: modifying several components

• architectural: modifying the gross system topology,

communication, and coordination mechanisms

An effective architecture is one in which the most likely

changes are local, and hence easy to make.

School of Software EngineeringSoftware Architecture, Spring 2015

44

School of Software Engineering

44

Enhancing communication among

stakeholders

Architecture provides a common frame of reference in

which competing interests may be exposed and

negotiated.

• Users

• Customers

• Manager

• Architect

School of Software EngineeringSoftware Architecture, Spring 2015

45

School of Software Engineering

45

Carrying earliest design decisions

Any design, in any discipline, can be viewed as a set of

decisions.

• Example: painting a picture

An architecture design can also be viewed as a set of

decisions.

• The early design decisions constrain the decisions that

follow, and changing these decisions has enormous

ramifications.

School of Software EngineeringSoftware Architecture, Spring 2015

46

School of Software Engineering

46

Carrying earliest design decisions

Some early design decisions embodied by software architecture:

• Will the system run on one processor or be distributed across multiple

processors?

• Will the software be layered? If so, how many layers will there be?

What will each one do?

• Will components communicate synchronously or asynchronously? Will

they interact by transferring control or data or both?

• Will the system depend on specific features of the operating system or

hardware?

• Will the information that flows through the system be encrypted or

not?

• What operating system will we use?

School of Software EngineeringSoftware Architecture, Spring 2015

47

School of Software Engineering

47

Defining constraints on an implementation

An architecture defines constraints on an implementation.

• Implementation must be implemented as the set of

prescribed elements which interact with each other in the

prescribed fashion.

• System tradeoffs regarding quality attributes are in the

architectural realm.

School of Software EngineeringSoftware Architecture, Spring 2015

48

School of Software Engineering

48

Influencing the organizational structure

The architecture dictates organizational structure for

development/maintenance efforts.

• work-breakdown structure

• units for budgeting, planning, scheduling

• file system organization and configuration control

• team communication

• basis of test plans, testing

• basis of maintenance

Once decided, architecture is extremely hard to change!

School of Software EngineeringSoftware Architecture, Spring 2015

49

School of Software Engineering

49

Enabling evolutionary prototyping

An architecture can be analyzed and prototyped as a

skeletal system.

• A skeletal system is one in which at least some of the

infrastructure is built.

• A plug-in system

• Reduce potential risk in the project. The cost of creating a

framework can be distributed.

School of Software EngineeringSoftware Architecture, Spring 2015

50

School of Software Engineering

50

Architecture is a reusable model

An architecture is an abstraction: enables a one-to-many
mapping (one architecture, many systems).

Reuse of architectures provides tremendous leverage for
similar systems.

Early-decision consequences are also transferred.

Entire software product lines can share a single
architecture.

School of Software EngineeringSoftware Architecture, Spring 2015

51

School of Software Engineering

51

Architecture is a reusable model

Less is more: It pays to restrict the vocabulary of design

alternatives.

Architectural styles serve as that restricted vocabulary of

design alternatives.

Working with known styles

• reduces learning time

• enhances communication

• takes advantage of known style properties (e.g.,

performance, security, reliability)

School of Software EngineeringSoftware Architecture, Spring 2015

52

School of Software Engineering

52

Factors influencing architectures

Architectures are influenced by

• stakeholders of a system

• technical and organizational factors

• architect’s background

School of Software EngineeringSoftware Architecture, Spring 2015

53

School of Software Engineering

53

Customers

Customers are the people who pay for system

development.

Customer concerns include

• cost of the system

• usability and lifetime of the system

• interoperability with other systems

• time to market

• platform portability

School of Software EngineeringSoftware Architecture, Spring 2015

54

School of Software Engineering

54

End users

End users are the people who use the system. They

include

• “regular” users

• system administrators

• members of the development organization

End users are concerned with

• ease of use

• availability of function

School of Software EngineeringSoftware Architecture, Spring 2015

55

School of Software Engineering

55

Other stakeholders

Development organization

Marketers

Maintenance organization

School of Software EngineeringSoftware Architecture, Spring 2015

56

School of Software Engineering

56

Stakeholders of a system

Behavior,
performance,

security,
reliability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Ohhhhh...
Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

Marketing
stakeholder

School of Software EngineeringSoftware Architecture, Spring 2015

57

School of Software Engineering

57

Development organization concerns

Immediate business issues

• amortizing the infrastructure

• keeping cost of installation low

• utilizing personnel

Long-term business issues

• investing in an infrastructure to reach strategic goals

• investing in personnel

School of Software EngineeringSoftware Architecture, Spring 2015

58

School of Software Engineering

58

Development organization concerns

Organizational structure issues

• furthering vested interests, e.g.,

o maintaining an existing database organization

o supporting specialized expertise

• maintaining the standard method of doing business

School of Software EngineeringSoftware Architecture, Spring 2015

59

School of Software Engineering

59

Technical environment

Current trends: today’s information system will likely

employ a

• database management system

• Web browser for delivery and distribution across platforms

Available technology: decisions on using a centralized or

decentralized system depend on processor cost and

communication speed; both are changing quantities.

School of Software EngineeringSoftware Architecture, Spring 2015

60

School of Software Engineering

60

Architect’s background

Architects develop their mindset from their past

experiences.

• Prior good experiences will lead to replication of prior

designs.

• Prior bad experiences will be avoided in the new design.

School of Software EngineeringSoftware Architecture, Spring 2015

61

School of Software Engineering

61

Summary: influences on the architect

Architect’s influences

Stakeholders

Development

organization

Technical

environment

Architect’s

experience

Requirements

Architecture

System

Architect(s)

School of Software EngineeringSoftware Architecture, Spring 2015

62

School of Software Engineering

62

Factors influenced by architectures

Structure of the development organization

Enterprise goals of the development organization

Customer requirements

Architect’s experience

Technical environment

The architecture itself

School of Software EngineeringSoftware Architecture, Spring 2015

63

School of Software Engineering

63

Architecture influences the development

organization structure

Short term: Work units are organized around architectural

units for a particular system under construction.

Long term: When company constructs collection of similar

systems, organizational units reflect common

components (e.g., operating system unit or database

unit).

School of Software EngineeringSoftware Architecture, Spring 2015

64

School of Software Engineering

64

Architecture influences the development

organization enterprise goals

A successful system may establish a foothold in the

market niche.

Being known for developing particular kinds of systems

becomes a marketing device.

Architecture becomes a leveraging point for additional

market opportunities and networking.

School of Software EngineeringSoftware Architecture, Spring 2015

65

School of Software Engineering

65

Architecture influences customer

requirements

Knowledge of similar fielded systems leads customers to

ask for particular features.

Customers will alter their requirements on the basis of the

availability of existing systems.

School of Software EngineeringSoftware Architecture, Spring 2015

66

School of Software Engineering

66

Architecture influences the architect’s

experience and technical environment

Creation of a system affects the architect’s background.

Occasionally, a system or an architecture will affect the

technical environment.

• the WWW for information systems

• the three-tier architecture for database systems

School of Software EngineeringSoftware Architecture, Spring 2015

67

School of Software Engineering

67

A cycle of influences

Architectures and organizations influence each other.

• Influences to and from architectures form a cycle.

• An organization can manage this cycle to its advantage.

School of Software EngineeringSoftware Architecture, Spring 2015

68

School of Software Engineering

68

Architecture Business Cycle (ABC)

Architect’s influences

Stakeholders

Development

organization

Technical

environment

Architect’s

experience

Requirements

Architecture

System

Architect(s)

School of Software EngineeringSoftware Architecture, Spring 2015

69

School of Software Engineering

69

What makes a “Good” architect?

People skills: must be able to

• negotiate competing interests of multiple stakeholders

• promote inter-team collaboration

Technical skills: must

• understand the relationships between qualities and

structures

• possess a current understanding of technology

• understand that most requirements for an architecture are

not written down in any requirements document

School of Software EngineeringSoftware Architecture, Spring 2015

70

School of Software Engineering

70

What makes a “Good” architect?

Communication skills: must be able to

• clearly convey the architecture to teams (both verbally and

in writing)

• listen to and understand multiple viewpoints

School of Software EngineeringSoftware Architecture, Spring 2015

71

School of Software Engineering

71

What makes a “Good” architect?

School of Software EngineeringSoftware Architecture, Spring 2015

72

School of Software Engineering

72

What makes a “Good” architecture?

Fitness for purpose

Achievable within a reasonable budget

Achievable within a reasonable time

School of Software EngineeringSoftware Architecture, Spring 2015

73

School of Software Engineering

73

What makes a “Good” architecture?

One measure of a good architecture is the how long it

survives as a solution to a particular problem and in how

many context can be used without changes.

School of Software EngineeringSoftware Architecture, Spring 2015

74

School of Software Engineering

74

What makes a “Good” architecture?

There is no clear, unified, objective way to define what is

a good architecture.

There are good and bad practices.

There are patterns and anti-patterns.

If a solution is good, usually survives the test of time.

There are always good examples to get inspiration from.

Solutions that have been around for a long time.

Solutions that work in multiple contexts and environments

independent of the product type.

School of Software EngineeringSoftware Architecture, Spring 2015

75

School of Software Engineering

75

Examples of good architectures

Good architectural styles exits now in most fields.

Pipes are a good model of combining multiple modules in

processing data.

Pipes can be extended into flow-based programming.

Relational databases are a stable solution of a large

group of database problems.

School of Software EngineeringSoftware Architecture, Spring 2015

76

School of Software Engineering

76

Examples of good architectures

The filing system is a good example of stable
architecture:

• In early computing it was not clear how to access/organize
persistent data.

• The hierarchical filing system solves this problem.

• A small, clearly defined and easy to use interface.

• Interface allows arbitrary implementation: various file
systems focusing on speed, failure tolerance, etc.

For user interfaces the Cocoa (NextStep) UI framework
provides a good inspiration.

POSIX is a good interface for OS designs.

School of Software EngineeringSoftware Architecture, Spring 2015

77

School of Software Engineering

77

Lecture summary

Architecture involves more than just technical

requirements for a system. It also involves non-technical

factors, such as

• the architect’s background

• the development environment

• the business goals of the sponsoring organization

Architecture influences the factors that affect it.

• Architects learn from experience.

• The development environment is expanded and altered.

• Businesses gain new marketing possibilities.

