
School of Software Engineering Software Architecture, Spring 2014

1

Software Architecture, Spring 2014 School of Software Engineering

1

Architectural Pattern

April 2014
Ying SHEN
SSE, Tongji University

School of Software Engineering Software Architecture, Spring 2014

2

School of Software Engineering Software Architecture, Spring 2014

2

Lecture objectives

This lecture will enable students to
• define what is meant by “architectural pattern”
• list several examples of architectural pattern and describe

the key characteristics of each
• give examples of how the use of particular architectural

patterns helps achieve desired qualities

School of Software Engineering Software Architecture, Spring 2014

3

School of Software Engineering Software Architecture, Spring 2014

3

Architectural patterns

An architectural pattern is a description of component
types and a pattern of their runtime control and/or data
transfer.

A pattern

• is found repeatedly in practice
• is a package of design decisions
• has known properties that permit reuse
• describes a class of architectures

School of Software Engineering Software Architecture, Spring 2014

4

School of Software Engineering Software Architecture, Spring 2014

4

Architectural patterns

An architectural pattern establishes a relationship
between:

• A context
o A recurring, common situation in the world that gives rise to a

problem.

• A problem
o The problem, appropriately generalized, that arises in the given

context.

• A solution
o A successful architectural resolution to the problem, appropriately

abstracted.

School of Software Engineering Software Architecture, Spring 2014

5

School of Software Engineering Software Architecture, Spring 2014

5

Architectural pattern catalog

The catalog is not meant to be exhaustive.
There is no unique, non-overlapping list.
Systems exhibit multiple patterns at once.

• A web-based system:
o A three-tier client-server architectural pattern
o and replication (mirroring), proxies, caches, firewalls, MVC…
o more patterns and tactics

Applying a pattern is not an all-or-nothing proposition.
• Violate them in small ways to have a good design tradeoff
• Example: layered pattern

School of Software Engineering Software Architecture, Spring 2014

6

School of Software Engineering Software Architecture, Spring 2014

6

Architectural pattern catalog

Patterns can be categorized by the dominant type of
elements:

• module patterns
o Layered pattern

• component-and-connector (C&C) patterns

• allocation patterns
o Map-reduced

o Broker
o MVC
o Pipe-and-filter
o Client-server

o Peer-to-peer
o Service-oriented
o Publish-subscribe
o Shared-data

School of Software Engineering Software Architecture, Spring 2014

7

School of Software Engineering Software Architecture, Spring 2014

7

Architectural pattern catalog

Patterns can be categorized by the dominant type of
elements:

• module patterns
o Layered pattern

• component-and-connector (C&C) patterns

• allocation patterns
o Map-reduced

o Broker
o MVC
o Pipe-and-filter
o Client-server

o Peer-to-peer
o Service-oriented
o Publish-subscribe
o Shared-data

School of Software Engineering Software Architecture, Spring 2014

8

School of Software Engineering Software Architecture, Spring 2014

8

Module pattern: Layered pattern

Context: All complex systems experience the need to
develop and evolve portions of the system independently.
Problem: The software needs to be segmented.

• Modules are developed and evolved separately to support
portability, modifiability, and reuse.

Solution: The layered pattern divides the software into
units called layers.

• Each layer is a grouping of modules that offers a cohesive
set of services.

• Constraints are the allowed-to-use relationship which is
unidirectional.

School of Software Engineering Software Architecture, Spring 2014

9

School of Software Engineering Software Architecture, Spring 2014

9

Module pattern: Layered pattern

The layers are created to interact according to a strict
ordering relation.

• (A, B) means layer A is allowed to use any of the public
facilities provided by layer B.

• Normally only next-lower-layer uses are allowed.
• A higher layer using modules in a nonadjacent lower layer

is called layer bridging.
o Portability and modifiability will be harmed.

• Upward usages are not allowed.

School of Software Engineering Software Architecture, Spring 2014

10

School of Software Engineering Software Architecture, Spring 2014

10

Module pattern: Layered pattern

Layers are almost always drawn as a stack of boxes. The
allowed-to-use relation is denoted by geometric
adjacency and is read from the top down.

School of Software Engineering Software Architecture, Spring 2014

11

School of Software Engineering Software Architecture, Spring 2014

11

Weakness

The addition of layers adds up-front cost and complexity
to a system.
Incorrect design of layers will not provide the lower-level
abstraction.
Layers contribute a performance penalty.

School of Software Engineering Software Architecture, Spring 2014

12

School of Software Engineering Software Architecture, Spring 2014

12

Architectural pattern catalog

Patterns can be categorized by the dominant type of
elements:

• module patterns
o Layered pattern

• component-and-connector (C&C) patterns

• allocation patterns
o Map-reduced

o Broker
o MVC
o Pipe-and-filter
o Client-server

o Peer-to-peer
o Service-oriented
o Publish-subscribe
o Shared-data

School of Software Engineering Software Architecture, Spring 2014

13

School of Software Engineering Software Architecture, Spring 2014

13

C&C pattern: Broker pattern

Context: Many systems are constructed from a collection
of services distributed across multiple servers.

• The systems will interoperate with each other
• The availability of the component services

Problem: How do we structure distributed software so
that service users do not need to know the nature and
location of service providers.
Solution: The broker pattern separates users of services
(clients) from providers of services (servers) by inserting
an intermediary, called a broker.

School of Software Engineering Software Architecture, Spring 2014

14

School of Software Engineering Software Architecture, Spring 2014

14

C&C pattern: Broker pattern

School of Software Engineering Software Architecture, Spring 2014

15

School of Software Engineering Software Architecture, Spring 2014

15

C&C pattern: Broker pattern

The client remains completely ignorant of the identity,
location, and characteristics of the server.

• A server is unavailable
• A server is replaced

School of Software Engineering Software Architecture, Spring 2014

16

School of Software Engineering Software Architecture, Spring 2014

16

C&C pattern: Broker pattern

School of Software Engineering Software Architecture, Spring 2014

17

School of Software Engineering Software Architecture, Spring 2014

17

Weakness

Brokers add a layer of indirection, and hence latency,
between clients and servers, and that layer may be a
communication bottleneck.
The broker can be a single point of failure.
A broker adds up-front complexity.
A broker may be a target for security attacks.
A broker may be difficult to test.

School of Software Engineering Software Architecture, Spring 2014

18

School of Software Engineering Software Architecture, Spring 2014

18

C&C pattern: Model-View-Controller
Pattern

Context: User interface is the most frequently modified
portion.

• Keep modifications to the user interface software.
• Users often wish to look at data from different perspectives.

o A bar graph or a pie chart

Problem:
• How to separate user interface functionality from

application functionality?
• How to create, maintain, and coordinate multiple views of

the UI?

School of Software Engineering Software Architecture, Spring 2014

19

School of Software Engineering Software Architecture, Spring 2014

19

C&C pattern: Model-View-Controller
Pattern

Solution: Application functionality is separated into three
kinds of components:

• A model, encapsulates the behavior and data of the
application domain

• A view, renders the model for presentation
• A controller, reacts on user input, modifies the model and

dispatches to the view
Both controller and view depend on the model.
Controller and view are part of the UI.
There must be at least one instances of each component.

School of Software Engineering Software Architecture, Spring 2014

20

School of Software Engineering Software Architecture, Spring 2014

20

C&C pattern: Model-View-Controller
Pattern

MVC is often used for web applications.
Many existing frameworks:

• JavaServer Faces (JSF), Struts, CakePHP, Django, Ruby on
Rails, ...

School of Software Engineering Software Architecture, Spring 2014

21

School of Software Engineering Software Architecture, Spring 2014

21

C&C pattern: Model-View-Controller
Pattern

School of Software Engineering Software Architecture, Spring 2014

22

School of Software Engineering Software Architecture, Spring 2014

22

MVC - Model

The model:
• Encapsulates the application state
• Response to state queries
• Exposes application functionality
• Notify view of changes
• Note: Notification only necessary, if the model and view

realize an observer pattern
A model can be associated with many controllers.

School of Software Engineering Software Architecture, Spring 2014

23

School of Software Engineering Software Architecture, Spring 2014

23

MVC - View

The view:
• Renders the model
• Requests updates from model
• Prepares the user interface for the controller
• Usually multiple views

School of Software Engineering Software Architecture, Spring 2014

24

School of Software Engineering Software Architecture, Spring 2014

24

MVC - Controller

The controller:
• Defines application behavior
• Manipulates the model
• Selects view for response

School of Software Engineering Software Architecture, Spring 2014

25

School of Software Engineering Software Architecture, Spring 2014

25

Advantages

Separation of concerns, helps reusability
Multiple different user interfaces without changes to the
model
Helps configurability (as interface changes are easier,
with less expected side effects than changes to the
application logic)

School of Software Engineering Software Architecture, Spring 2014

26

School of Software Engineering Software Architecture, Spring 2014

26

Disadvantages

Increases the complexity by additional components
If updates to the view are based on notifications, it might
be hard to find errors
In this cases, it is hard to ensure a good usability (no
control when an update happens)

School of Software Engineering Software Architecture, Spring 2014

27

School of Software Engineering Software Architecture, Spring 2014

27

C&C pattern: Pipe-and-filter pattern

Context: Many systems are required to transform
streams of discrete data items.

• It is desirable to create independent, reusable components.
Problem: How to design a system composed by
reusable, loosely coupled components with simple,
generic interaction mechanisms?

School of Software Engineering Software Architecture, Spring 2014

28

School of Software Engineering Software Architecture, Spring 2014

28

C&C pattern: Pipe-and-filter pattern

Solution: The system can be designed as successive
transformations of streams of data.
Data enter the system and then flows through the
components one at a time until

• the data is assigned to some final destination (output or a
data store).

The goal is to achieve the quality of reuse and
modifiability.
Example: Unix command line pipes

% program1 | program2 | program3
% ls -l | grep key | more

School of Software Engineering Software Architecture, Spring 2014

29

School of Software Engineering Software Architecture, Spring 2014

29

C&C pattern: Pipe-and-filter pattern

Conceptually filters consume data from inputs and write
data to outputs.
Filters do not know anything about other filters.
Ideally they are completely independent from each other.
Data flows in streams: good for processing of images,
audio, video, ...

School of Software Engineering Software Architecture, Spring 2014

30

School of Software Engineering Software Architecture, Spring 2014

30

C&C pattern: Pipe-and-filter pattern

School of Software Engineering Software Architecture, Spring 2014

31

School of Software Engineering Software Architecture, Spring 2014

31

C&C pattern: Pipe-and-filter pattern

Variations: structural and communicational
Structural: more complex topologies might be used
E.g. loops, branches, more than one input, ...
Term pipeline used for linear sequence of filters
Communicational: are filters blocked and wait for data?
Term bounded pipe for limited amount of data in the pipe

School of Software Engineering Software Architecture, Spring 2014

32

School of Software Engineering Software Architecture, Spring 2014

32

C&C pattern: Pipe-and-filter pattern

What is the data-structure within the pipe?
All components in the pipe have to agree
Term typed pipe if data is structured
The more specific the data-structures are, the tighter the
coupling

School of Software Engineering Software Architecture, Spring 2014

33

School of Software Engineering Software Architecture, Spring 2014

33

Advantages

Pipes are conceptually simple (helps maintainability)
Components can be reused
Easy to add and remove components (helps evolvability)
Allow injection of special components to address cross-
cutting concerns

• E.g. monitor throughput, logging, ...
Allow concurrent/parallel execution (helps scalability)

School of Software Engineering Software Architecture, Spring 2014

34

School of Software Engineering Software Architecture, Spring 2014

34

Disadvantages

Pipes often lead to batch processing
Therefore not well suited for interactive applications

• E.g. hard to implement incremental updates
Each filter has to parse/unparse the data (bad for
performance)

• Adds complexity to each component

School of Software Engineering Software Architecture, Spring 2014

35

School of Software Engineering Software Architecture, Spring 2014

35

C&C pattern: Client-server pattern

Context: Large numbers of distributed clients wish to
access shared resources and services.
Problem:

• How to manage a set of shared resources and services?
o Multiple physical servers

• How to improve modifiability and reuse, scalability and
availability?

School of Software Engineering Software Architecture, Spring 2014

36

School of Software Engineering Software Architecture, Spring 2014

36

C&C pattern: Client-server pattern

Solution:
• Clients request services of servers.
• There may be one central server or multiple distributed

ones.
The principal connector type for the client-server pattern
is a data connector

• driven by a request/reply protocol used for invoking
services.

School of Software Engineering Software Architecture, Spring 2014

37

School of Software Engineering Software Architecture, Spring 2014

37

C&C pattern: Client-server pattern

Basic concept:
• The client uses a service
• The server provides a service
• The service can be any resource

o E.g. data, file, CPU, display device

Typically connected via a network
Clients are independent from each other

School of Software Engineering Software Architecture, Spring 2014

38

School of Software Engineering Software Architecture, Spring 2014

38

C&C pattern: Client-server pattern

School of Software Engineering Software Architecture, Spring 2014

39

School of Software Engineering Software Architecture, Spring 2014

39

C&C pattern: Client-server pattern

The server provide an abstract service.
The implementation of the server decides how to fulfil the
request.

• Hiding details of programming language, operating system
Loose coupling between client and server
The location of the server is transparent.
Sometimes the client also might become the server (and
vice versa).

School of Software Engineering Software Architecture, Spring 2014

40

School of Software Engineering Software Architecture, Spring 2014

40

C&C pattern: Client-server pattern

Separation of concerns (SoC)
Functionality is clearly split into separate components.

• Also motivation for the layered architecture style, where
each layer is responsible for its own abstraction

Supports independent evolvability
• if the communication between client and server is well

designed.

School of Software Engineering Software Architecture, Spring 2014

41

School of Software Engineering Software Architecture, Spring 2014

41

C&C pattern: Client-server pattern

Client-server pattern is used by other architectural styles
It can be used to realize a shared repository

• E.g. for the data-centric repository pattern
• E.g. for filters which operate on a single shared data

structure

School of Software Engineering Software Architecture, Spring 2014

42

School of Software Engineering Software Architecture, Spring 2014

42

C&C pattern: Client-server pattern

Client-server - Shared Repository:

School of Software Engineering Software Architecture, Spring 2014

43

School of Software Engineering Software Architecture, Spring 2014

43

C&C pattern: Client-server pattern

Two basic types of topology of the server
• Single, centralized server or
• Multiple, distributed servers

Centralized servers are easier to administer (install,
deploy updates, maintain, monitor, ...).
Distributed servers scale better, but could introduce
complexity (e.g. require two-phase commits).

School of Software Engineering Software Architecture, Spring 2014

44

School of Software Engineering Software Architecture, Spring 2014

44

C&C pattern: Client-server pattern

Client-Server - Centralized

School of Software Engineering Software Architecture, Spring 2014

45

School of Software Engineering Software Architecture, Spring 2014

45

C&C pattern: Client-server pattern

Client-Server – Distributed:

School of Software Engineering Software Architecture, Spring 2014

46

School of Software Engineering Software Architecture, Spring 2014

46

C&C pattern: Client-server pattern

The server is no longer in the organizations network, but
somewhere in the Internet.

• Example: cloud services by Salesforce, Google, Microsoft
Scalability, security, reliability is expected to be handled
by a specialized team.
Loss of control, legal issues (data is exported to another
country)
Needs a working Internet connection

School of Software Engineering Software Architecture, Spring 2014

47

School of Software Engineering Software Architecture, Spring 2014

47

Advantages

Conceptually simple
Clear separation of responsibilities, eases evolvability,
help testability
Good scalability
Good for security, as data can be held at the server with
restricted access

School of Software Engineering Software Architecture, Spring 2014

48

School of Software Engineering Software Architecture, Spring 2014

48

Disadvantages

Risk of bad usability/performance, if the communication
between client and server is slow, or has a high latency
Need to develop/agree on a protocol between client and
server
Integrability into existing systems might not be possible
(e.g. if the communication is not possible, or not allowed)

School of Software Engineering Software Architecture, Spring 2014

49

School of Software Engineering Software Architecture, Spring 2014

49

C&C pattern: Peer-to-peer pattern

Context: Distributed equally important entities cooperate
and collaborate to provide a service to distributed users.
Problem: How can a set of “equal” distributed entities be
connected to each to provide services with high
availability and scalability?

School of Software Engineering Software Architecture, Spring 2014

50

School of Software Engineering Software Architecture, Spring 2014

50

C&C pattern: Peer-to-peer pattern

Solution: In the peer-to-peer (P2P) pattern, components
directly interact as peers.

• All peers are “equal”.
Peer-to-peer communication is typically a request/reply
interaction.

• It’s a symmetric relationship

School of Software Engineering Software Architecture, Spring 2014

51

School of Software Engineering Software Architecture, Spring 2014

51

C&C pattern: Peer-to-peer pattern

Separation between client and server is removed.
Each client is a server at the same time, called peer.
The goal is to distribute the processing or data among
many peers.
No central administration or coordination.

School of Software Engineering Software Architecture, Spring 2014

52

School of Software Engineering Software Architecture, Spring 2014

52

C&C pattern: Peer-to-peer pattern

School of Software Engineering Software Architecture, Spring 2014

53

School of Software Engineering Software Architecture, Spring 2014

53

C&C pattern: Peer-to-peer pattern

Each peer provides services and consumes services.
Communication might occurs between all peers.
Number of peers is dynamic.
Each peer has to know how to access other peers
(discover, search, join).

School of Software Engineering Software Architecture, Spring 2014

54

School of Software Engineering Software Architecture, Spring 2014

54

C&C pattern: Peer-to-peer pattern

Once a peer is initialized, it needs to be come part of the
network.
A bootstrapping mechanism is needed:

• For example via a broadcast message
• For example a public list of network addresses

School of Software Engineering Software Architecture, Spring 2014

55

School of Software Engineering Software Architecture, Spring 2014

55

C&C pattern: Peer-to-peer pattern

Centralized P2P:
• Some aspects are centralized.
• For example, a central component keeps track of the

available peers.
Hybrid P2P:

• Not all peers are equal, some have additional
responsibilities.

• They are called supernodes.
• Example: Skype uses a peer-to-peer protocol, but also uses

supernodes and a central login servers.

School of Software Engineering Software Architecture, Spring 2014

56

School of Software Engineering Software Architecture, Spring 2014

56

Advantages

Good for scalability
Improve system’s performance
Good for reliability, as data can be replicated over peer
No single point of failure

School of Software Engineering Software Architecture, Spring 2014

57

School of Software Engineering Software Architecture, Spring 2014

57

Disadvantages

Quality of service is not deterministic, cannot be
guaranteed
Very complex, hard to maintain and test

• Security, data consistency, availability, backup, recovery…

School of Software Engineering Software Architecture, Spring 2014

58

School of Software Engineering Software Architecture, Spring 2014

58

C&C pattern: Shared-data pattern

Context: Various computational components need to
share and manipulate large amounts of data.

• Data does not belong to any one of those components.
Problem: How can systems store and manipulate
persistent data that is accessed by multiple independent
components?

School of Software Engineering Software Architecture, Spring 2014

59

School of Software Engineering Software Architecture, Spring 2014

59

C&C pattern: Shared-data pattern

Solution: In the shared-data pattern, interaction is
dominated by the exchange of data between

• multiple data accessors and
• at least one shared-data store.

Exchange may be initiated by the accessors or the data
store.
The connector type is data reading and writing.

School of Software Engineering Software Architecture, Spring 2014

60

School of Software Engineering Software Architecture, Spring 2014

60

C&C pattern: Shared-data pattern

School of Software Engineering Software Architecture, Spring 2014

61

School of Software Engineering Software Architecture, Spring 2014

61

Advantages

Ensures data integrity
Reliable, secure, testability guaranteed
Clients independent from the system: performance and
usability on the client side is typically good

School of Software Engineering Software Architecture, Spring 2014

62

School of Software Engineering Software Architecture, Spring 2014

62

Disadvantages

Problems with scalability, reliability (single point of failure)
• Solutions: shared repositories, replication but this increases

complexity
Unclear border which functionality lies in the DB and
which in the client
Data producers and consumers are tightly coupled.

School of Software Engineering Software Architecture, Spring 2014

63

Software Architecture, Spring 2014 School of Software Engineering

63

Some case studies

School of Software Engineering Software Architecture, Spring 2014

64

School of Software Engineering Software Architecture, Spring 2014

64

1. KWIC

In his paper (1972) David Parnas proposed the following
problem

The KWIC (Key Word in Context) index system accepts an
ordered set of lines; each line is an ordered set of words, and
each word is an ordered set of characters. Any line may be
“circularly shifted” by repeatedly removing the first word and
appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical
order.

School of Software Engineering Software Architecture, Spring 2014

65

School of Software Engineering Software Architecture, Spring 2014

65

Circular shifts

Original title
• Gone with the Wind

Circular shifts (key words underlined)
• Gone with the Wind
• with the Wind Gone
• the Wind Gone with
• Wind Gone with the

Stop word removal
• Gone with the Wind
• Wind Gone with the

School of Software Engineering Software Architecture, Spring 2014

66

School of Software Engineering Software Architecture, Spring 2014

66

Example with multiple titles

Gone with the Wind
War and Remembrances
The Winds of War

School of Software Engineering Software Architecture, Spring 2014

67

School of Software Engineering Software Architecture, Spring 2014

67

Architectural solutions for KWIC

KWIC with
• (main program/subroutine with) shared data style
• pipe-and-filter
• abstract data types (Object-Oriented)
• implicit invocation (event-based)

School of Software Engineering Software Architecture, Spring 2014

68

School of Software Engineering Software Architecture, Spring 2014

68

KWIC with shared data style

Historical example: Shared data style is the way that
systems were built for performance reasons until the
early 1970s.
Shared data style is not normally used today due to
concerns with other qualities. (Shared data style does
not easily scale up to large architectures.)

School of Software Engineering Software Architecture, Spring 2014

69

School of Software Engineering Software Architecture, Spring 2014

69

KWIC with shared data style

Problem decomposed according to 4 basic functions
• Input, shift, alphabetize, output

Components coordinated by main program that
sequences through them.
Data in shared storage
Communication: unconstrained read-write protocol

• Coordinator ensures sequential access to data

School of Software Engineering Software Architecture, Spring 2014

70

School of Software Engineering Software Architecture, Spring 2014

70

KWIC with shared data style

Master control

Input Output Alphabetize Circ shift

Characters Index Alphabetized index

School of Software Engineering Software Architecture, Spring 2014

71

School of Software Engineering Software Architecture, Spring 2014

71

KWIC with shared data style

Advantages
• Data can be represented efficiently
• Intuitive appeal

Disadvantages
• Modifiability

o Change in data format affects all components
o Enhancements to system function

• Reuse not easy to do

School of Software Engineering Software Architecture, Spring 2014

72

School of Software Engineering Software Architecture, Spring 2014

72

KWIC with abstract data types

Similar set of five modules, with interfaces
Data is not shared by computational components

• Accessed via interfaces

School of Software Engineering Software Architecture, Spring 2014

73

School of Software Engineering Software Architecture, Spring 2014

73

KWIC with abstract data types

Set
char Char Word Set

char Char Setup Word alph i-th

Master control

Input Output

Characters Circular shift Alphabetic shift

School of Software Engineering Software Architecture, Spring 2014

74

School of Software Engineering Software Architecture, Spring 2014

74

KWIC with abstract data types

Advantages
• Logical decomposition into processing modules similar to

shared data
• Algorithms/data can be changed in individual modules w/o

affecting others
• Better reuse (module has fewer assumptions about other

modules)
Disadvantages

• Enhancing the function
o Modify existing modules -> bad for simplicity, integrity
o Add new modules -> performance penalties

School of Software Engineering Software Architecture, Spring 2014

75

School of Software Engineering Software Architecture, Spring 2014

75

KWIC with implicit invocation

Shared data as the integration mechanism
More abstract data interfaces

• Data accessed as a list/set
Computations invoked implicitly when data is modified

• Line added -> event to shift module
• Circular shifts produced in another shared data store ->

event to alphabetizer, invoked

School of Software Engineering Software Architecture, Spring 2014

76

School of Software Engineering Software Architecture, Spring 2014

76

KWIC with implicit invocation

Insert Delete i-th

Master control

Input Output

Lines Shifted lines

Alphabetize Circ shift

Insert Delete i-th

School of Software Engineering Software Architecture, Spring 2014

77

School of Software Engineering Software Architecture, Spring 2014

77

KWIC with implicit invocation

Advantages
• Functional enhancements easily
• Data changes possible
• Reuse

Disadvantages
• Difficult to control processing order of implicitly invoked

modules
• Data representation uses more space

School of Software Engineering Software Architecture, Spring 2014

78

School of Software Engineering Software Architecture, Spring 2014

78

KWIC with pipe-and-filter

Two filters
• Circular shift, alphabetizer
• Process data and send it to the next

Distributed control
Data sharing

• Only the one transmitted on pipes

School of Software Engineering Software Architecture, Spring 2014

79

School of Software Engineering Software Architecture, Spring 2014

79

KWIC with pipe-and-filter

Circular shift Alphabetizer

Input lines Shifted lines Sorted, shifted lines

School of Software Engineering Software Architecture, Spring 2014

80

School of Software Engineering Software Architecture, Spring 2014

80

KWIC with pipe-and-filter

Advantages
• Maintains intuitive flow of processing
• Reuse supported
• New functions easily added
• Amenable to modifications

Disadvantages
• Impossible to modify design to get interactive system
• Data is copied between filters –> space used inefficiently
• Slower performance speed -> parsing input

School of Software Engineering Software Architecture, Spring 2014

81

School of Software Engineering Software Architecture, Spring 2014

81

Rough comparison of KWIC architectures

Shared
data

Abstract
data type

Implicit
invocation

Piper and
filter

Change in
algorithm

- - + +

Change in data
representation

- + - -

Change in
function

- - + +

performance + + - -

Reuse - + - +

School of Software Engineering Software Architecture, Spring 2014

82

School of Software Engineering Software Architecture, Spring 2014

82

2. Instrumentation software

Develop a reusable system architecture for oscilloscopes
Rely on digital technology
Have quite complex software

School of Software Engineering Software Architecture, Spring 2014

83

School of Software Engineering Software Architecture, Spring 2014

83

Problems to solve

Reuse across different oscilloscope products
• Tailor a general-purpose instrument to a specific set of

users
Performance important

• Rapid configuration of software within the instrument
⇒Domain-specific software architecture
We outline the stages in the architectural development

School of Software Engineering Software Architecture, Spring 2014

84

School of Software Engineering Software Architecture, Spring 2014

84

The problem frame

School of Software Engineering Software Architecture, Spring 2014

85

School of Software Engineering Software Architecture, Spring 2014

85

Oscilloscope: OO Approach

Clarified the data types used for oscilloscopes
• Waveforms, signals, measurement, trigger modes, …

No overall model to explain how the types fit together
Confusion about partitioning of functionality

• Should measurements be associated with types of data
being measured or represented externally?

• Which objects should the user interface interact with?

School of Software Engineering Software Architecture, Spring 2014

86

School of Software Engineering Software Architecture, Spring 2014

86

Oscilloscope: OO Approach

School of Software Engineering Software Architecture, Spring 2014

87

School of Software Engineering Software Architecture, Spring 2014

87

Oscilloscope: Layered approach

Well-defined grouping of functions
Wrong model for the application domain

• Layer boundaries conflicted with the needs of the
interaction among functions
o The model suggest user interaction only via visual representation,

but in practice this interaction affects all layers (setting
parameters, etc)

School of Software Engineering Software Architecture, Spring 2014

88

School of Software Engineering Software Architecture, Spring 2014

88

Oscilloscope: Layered approach

School of Software Engineering Software Architecture, Spring 2014

89

School of Software Engineering Software Architecture, Spring 2014

89

Oscilloscope: Pipe-and-filter approach

Signal transformers used to condition external signals
Acquisition transformers derive digitized waveforms from
these signals
Display transformers convert these waveforms into visual
data
Oscilloscope functions were viewed as incremental
transformers of data
Corresponds well with the engineers’ view of signal
processing as a dataflow problem
Main problem:

• How should the user interact?

School of Software Engineering Software Architecture, Spring 2014

90

School of Software Engineering Software Architecture, Spring 2014

90

Oscilloscope: Pipe-and-filter approach

School of Software Engineering Software Architecture, Spring 2014

91

School of Software Engineering Software Architecture, Spring 2014

91

Oscilloscope: Extended pipe-filter
approach

Each filter was associated with a control interface
• Provides a collection of settings to be modified

dynamically by the user
• Explains how the user can make incremental adjustments to

SW
• Decouples signal-processing from user interface

Signal-processing SW and HW can be changed without
affecting the user interface as long as the control
interface remains the same

School of Software Engineering Software Architecture, Spring 2014

92

School of Software Engineering Software Architecture, Spring 2014

92

Oscilloscope: Extended pipe-filter
approach

School of Software Engineering Software Architecture, Spring 2014

93

School of Software Engineering Software Architecture, Spring 2014

93

Oscilloscope: Extended pipe-filter
approach

Further specialization
• Pipe-and-filter lead to poor performance

o Problems with internal storage and data exchange between filters
– Waveforms have large internal storage => not practical for

filters to copy waveforms every time they process them
o Filters may run at radically different speeds

– Not good to slow faster filter just to keep the pace with slower
ones

School of Software Engineering Software Architecture, Spring 2014

94

School of Software Engineering Software Architecture, Spring 2014

94

Oscilloscope: Extended pipe-filter
approach

Further specialization
• Solution: several types of pipes (distinct colors)

o Some allowed data processing w/o copying
o Slow filters allowed to ignore incoming data when already

processing other data
o => the pipe/filter computations more tailorable

School of Software Engineering Software Architecture, Spring 2014

95

School of Software Engineering Software Architecture, Spring 2014

95

Oscilloscope: Extended pipe-filter
approach

School of Software Engineering Software Architecture, Spring 2014

96

School of Software Engineering Software Architecture, Spring 2014

96

Instrumentation software summary

Case study shows
• Some issues for developing architectures for industrial SW
• Different styles => different effects on solution

Software must be typically adapted from pure forms to
specialized styles (domain specific)
Here the result depended on properties of pipe-and-filter
architecture adapted to satisfy the needs of the product
family

School of Software Engineering Software Architecture, Spring 2014

97

School of Software Engineering Software Architecture, Spring 2014

97

Rules of Thumb for Choosing Styles

The goal of style catalogs is to develop a design
handbook: “If your problem looks like x, use style y.”

The practice is not that advanced yet. The best that we
can do is offer rules of thumb.

School of Software Engineering Software Architecture, Spring 2014

98

School of Software Engineering Software Architecture, Spring 2014

98

The End

http://house.sohu.com/msgview/2874/1/51168420.html

	Architectural Pattern
	Lecture objectives
	Architectural patterns
	Architectural patterns
	Architectural pattern catalog
	Architectural pattern catalog
	Architectural pattern catalog
	Module pattern: Layered pattern
	Module pattern: Layered pattern
	Module pattern: Layered pattern
	Weakness
	Architectural pattern catalog
	C&C pattern: Broker pattern
	C&C pattern: Broker pattern
	C&C pattern: Broker pattern
	C&C pattern: Broker pattern
	Weakness
	C&C pattern: Model-View-Controller Pattern
	C&C pattern: Model-View-Controller Pattern
	C&C pattern: Model-View-Controller Pattern
	C&C pattern: Model-View-Controller Pattern
	MVC - Model
	MVC - View
	MVC - Controller
	Advantages
	Disadvantages
	C&C pattern: Pipe-and-filter pattern
	C&C pattern: Pipe-and-filter pattern
	C&C pattern: Pipe-and-filter pattern
	C&C pattern: Pipe-and-filter pattern
	C&C pattern: Pipe-and-filter pattern
	C&C pattern: Pipe-and-filter pattern
	Advantages
	Disadvantages
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	C&C pattern: Client-server pattern
	Advantages
	Disadvantages
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	C&C pattern: Peer-to-peer pattern
	Advantages
	Disadvantages
	C&C pattern: Shared-data pattern
	C&C pattern: Shared-data pattern
	C&C pattern: Shared-data pattern
	Advantages
	Disadvantages
	Some case studies
	1. KWIC
	Circular shifts
	Example with multiple titles
	Architectural solutions for KWIC
	KWIC with shared data style
	KWIC with shared data style
	KWIC with shared data style
	KWIC with shared data style
	KWIC with abstract data types
	KWIC with abstract data types
	KWIC with abstract data types
	KWIC with implicit invocation
	KWIC with implicit invocation
	KWIC with implicit invocation
	KWIC with pipe-and-filter
	KWIC with pipe-and-filter
	KWIC with pipe-and-filter
	Rough comparison of KWIC architectures
	2. Instrumentation software
	Problems to solve
	The problem frame
	Oscilloscope: OO Approach
	Oscilloscope: OO Approach
	Oscilloscope: Layered approach
	Oscilloscope: Layered approach
	Oscilloscope: Pipe-and-filter approach
	Oscilloscope: Pipe-and-filter approach
	Oscilloscope: Extended pipe-filter approach
	Oscilloscope: Extended pipe-filter approach
	Oscilloscope: Extended pipe-filter approach
	Oscilloscope: Extended pipe-filter approach
	Oscilloscope: Extended pipe-filter approach
	Instrumentation software summary
	Rules of Thumb for Choosing Styles
	The End

