
School of Software Engineering Software Architecture, Spring 2014

1

Software Architecture, Spring 2014 School of Software Engineering

1

Quality Attributes

March 2014
Ying SHEN
SSE, Tongji University

School of Software Engineering Software Architecture, Spring 2014

2

School of Software Engineering Software Architecture, Spring 2014

2

Lecture objectives

This lecture will enable students to
• be familiar with different system qualities and examples

through a real project (ICDE system).

School of Software Engineering Software Architecture, Spring 2014

3

School of Software Engineering Software Architecture, Spring 2014

3

Architecture and requirements

All requirements encompass the following categories:
• Functional requirements
• Quality attribute requirements
• Constraints

School of Software Engineering Software Architecture, Spring 2014

4

School of Software Engineering Software Architecture, Spring 2014

4

Architecture and functionality

Functionality is the ability of the system to do the work for
which it was intended.
Functionality does not determine architecture.

• If functionality is the only requirement, a single monolithic
module works!

Although functionality is independent of structure, it is
achieved by assigning responsibilities to architectural
elements.

School of Software Engineering Software Architecture, Spring 2014

5

School of Software Engineering Software Architecture, Spring 2014

5

Quality attributes

A quality attribute (QA) is a measurable or testable
property of a system that is used to indicate how well the
system satisfies the needs of its stakeholders.

A quality attribute can be regarded as measuring the
“goodness” of a product along some dimension of interest
to a stakeholder.

School of Software Engineering Software Architecture, Spring 2014

6

School of Software Engineering Software Architecture, Spring 2014

6

Quality attributes

QAs specify how well the system performs its functions:
• How fast must it respond?
• How easy must it be to use?
• How secure does it have to be against attacks?
• How easy should it be to maintain?

Software qualities are not orthogonal.
• A change in structure that improves one quality often

affects the other qualities.

School of Software Engineering Software Architecture, Spring 2014

7

Software Architecture, Spring 2014 School of Software Engineering

7

A Case Study in Quality Attribute

From Essential Software Architecture

School of Software Engineering Software Architecture, Spring 2014

8

School of Software Engineering Software Architecture, Spring 2014

8

ICDE system

Information Capture and Dissemination Environment
(ICDE) is a software system for providing intelligent
assistance to

• financial analysts
• scientific researchers
• intelligence analysts
• analysts in other domains

School of Software Engineering Software Architecture, Spring 2014

9

School of Software Engineering Software Architecture, Spring 2014

9

ICDE schematic

School of Software Engineering Software Architecture, Spring 2014

10

School of Software Engineering Software Architecture, Spring 2014

10

ICDE use cases

School of Software Engineering Software Architecture, Spring 2014

11

School of Software Engineering Software Architecture, Spring 2014

11

Case study context

ICDE version 1.0 in production
Basically a complex, raw information capture tool, GUI for
looking at captured data.
2 tier client-server, single machine deployment.

• Java, Perl, SQL,
• Programmatic access to data through very complex SQL

(38 tables, 46 views)
• Windows XP platform

School of Software Engineering Software Architecture, Spring 2014

12

School of Software Engineering Software Architecture, Spring 2014

12

Case study context

Analyst Workstation

Data Collection

Data Analysis

Data Store

ICDE Version 1.0 application architecture

School of Software Engineering Software Architecture, Spring 2014

13

School of Software Engineering Software Architecture, Spring 2014

13

ICDE version 2.0

Business goals:

School of Software Engineering Software Architecture, Spring 2014

14

School of Software Engineering Software Architecture, Spring 2014

14

ICDE version 2.0

ICDE v2.0 scheduled for development in 12 month
timeframe

• Fixed schedule, budget
Major changes to:

• Enhance data capture tools (GUI)
• Support 3rd party tool integration, testing, data access and

large production scale deployments (150’s of users)

School of Software Engineering Software Architecture, Spring 2014

15

School of Software Engineering Software Architecture, Spring 2014

15

Architecturally significant requirements for
ICDE v2.0

ICDE project requirements:
 Heterogeneous platform support for access to ICDE data
 Instantaneous event notification (local/distributed)
 Over the Internet, secure ICDE data access
 Ease of programmatic data access

ICDE project team requirements:
 Insulate 3rd party projects and ICDE tools from database evolution
 Scalable infrastructure to support large, shared deployments
 Minimize license costs for a deployment

Unknowns
 Minimize dependencies, making unanticipated changes potentially

easier

School of Software Engineering Software Architecture, Spring 2014

16

School of Software Engineering Software Architecture, Spring 2014

16

Summary

ICDE is a reasonably complex system

Will be used to illustrate concepts during the remainder of
this course

School of Software Engineering Software Architecture, Spring 2014

17

School of Software Engineering Software Architecture, Spring 2014

17

What are quality attributes

Often know as –ilities
• Reliability
• Availability
• Portability
• Scalability
• Performance (!)

Part of a system’s NFRs
• “how” the system achieves its functional requirements

School of Software Engineering Software Architecture, Spring 2014

18

School of Software Engineering Software Architecture, Spring 2014

18

Quality attribute specification

Architects are often told:
• “My application must be fast/secure/scale”

Far too imprecise to be any use at all
Quality attributes (QAs) must be made precise/measurable
for a given system design, e.g.

• “It must be possible to scale the deployment from an initial
100 geographically dispersed user desktops to 10,000
without an increase in effort/cost for installation and
configuration.”

School of Software Engineering Software Architecture, Spring 2014

19

School of Software Engineering Software Architecture, Spring 2014

19

QAs of ICDE system

Performance
Scalability
Modifiability
Security
Availability
Integration

Any other quality attributes?

School of Software Engineering Software Architecture, Spring 2014

20

School of Software Engineering Software Architecture, Spring 2014

20

Performance

A performance quality requirement defines a:
• metric of amount of work performed in unit time
• deadline that must be met

Enterprise applications often have strict performance
requirements, e.g.

• 1000 transactions per second
• 3 second average latency for a request

Performance is fundamental for software system.

School of Software Engineering Software Architecture, Spring 2014

21

School of Software Engineering Software Architecture, Spring 2014

21

Performance - Throughput

Measure of the amount of work an application must
perform in unit time

• Transactions per second
• Messages per minute

Is required throughput:
• Average?
• Peak?

Many system have low average but high peak throughput
requirements

School of Software Engineering Software Architecture, Spring 2014

22

School of Software Engineering Software Architecture, Spring 2014

22

Performance - Response time

Measure of the latency an application exhibits in
processing a request
Usually measured in (milli)seconds
Often an important metric for users
Is required response time:

• Guaranteed?
• Average?

E.g. 95% of responses in sub-4 seconds, and
all within 10 seconds

School of Software Engineering Software Architecture, Spring 2014

23

School of Software Engineering Software Architecture, Spring 2014

23

Performance - Deadlines

‘Something must be completed before some specified
time’

• Payroll system must complete by 2 am so that electronic
transfers can be sent to bank

• Weekly accounting run must complete by 6 am Monday so
that figures are available to management

Deadlines often associated with batch jobs in IT systems.

School of Software Engineering Software Architecture, Spring 2014

24

School of Software Engineering Software Architecture, Spring 2014

24

ICDE performance issues

Response time:
• Overheads of trapping user events must be imperceptible

to ICDE users
Solution for ICDE client:

• Decouple user event capture from storage using a queue

5. Write event to
ICDE database queue

4. Read event
from queue

2. Write event
to queue

1. Trap user event

3. Return to user thread

School of Software Engineering Software Architecture, Spring 2014

25

School of Software Engineering Software Architecture, Spring 2014

25

Scalability

“How well a solution to some problem will work when the
size of the problem increases.”
4 common scalability issues in IT systems:

• Request load
• Connections
• Data size
• Deployments

School of Software Engineering Software Architecture, Spring 2014

26

School of Software Engineering Software Architecture, Spring 2014

26

Scalability – Request load

How does an 100 tps application behave when
simultaneous request load grows? E.g.

• From 100 to 1000 requests per second?
Ideal solution, without additional hardware capacity:

• as the load increases, throughput remains constant (i.e. 100
tps), and response time per request increases only linearly
(i.e. 10 seconds).

School of Software Engineering Software Architecture, Spring 2014

27

School of Software Engineering Software Architecture, Spring 2014

27

Scalability – Add more hardware …

Application

Application

Application Application Application

CPU

Scale-up:
Single application instance is
executed on a multiprocessor
machine

Scale-out:
Application replicated on
different machines

School of Software Engineering Software Architecture, Spring 2014

28

School of Software Engineering Software Architecture, Spring 2014

28

Scalability - Reality

Adding more hardware should improve performance:
• Scalability must be achieved without modifications to

application architecture
Reality as always is different!
Applications will exhibit a decrease in throughput and a
subsequent exponential increase in response time.

• Increased load causes increased contention for resources
such as CPU, network and memory

• Each request consumes some additional resource (buffer
space, locks, and so on) in the application, and eventually
these are exhausted

School of Software Engineering Software Architecture, Spring 2014

29

School of Software Engineering Software Architecture, Spring 2014

29

Scalability – J2EE example

I.Gorton, A Liu, Performance Evaluation of Alternative Component
Architectures for Enterprise JavaBean Applications, in IEEE Internet
Computing, vol.7, no. 3, pages 18-23, 2003.

School of Software Engineering Software Architecture, Spring 2014

30

School of Software Engineering Software Architecture, Spring 2014

30

Scalability – Connections

What happens if number of simultaneous connections to
an application increases

• If each connection consumes a resource?
• Exceed maximum number of connections?

ISP example:
• Each user connection spawned a new process
• Virtual memory on each server exceeded at 2000 users
• Needed to support 100Ks of users
• Tech crash ….

School of Software Engineering Software Architecture, Spring 2014

31

School of Software Engineering Software Architecture, Spring 2014

31

Scalability – Data size

How does an application behave as the data it processes
increases in size?

• Chat application sees average message size double?
• Database table size grows from 1 million to 20 million

rows?
• Image analysis algorithm processes images of 100MB

instead of 1MB?
Can application/algorithms scale to handle increased
data requirements?

School of Software Engineering Software Architecture, Spring 2014

32

School of Software Engineering Software Architecture, Spring 2014

32

Scalability - Deployment

How does effort to install/deploy an application increase
as installation base grows?

• Install new users?
• Install new servers?

Solutions typically revolve around automatic
download/installation

• E.g. downloading applications from the Internet

School of Software Engineering Software Architecture, Spring 2014

33

School of Software Engineering Software Architecture, Spring 2014

33

Scalability thoughts and ICDE

Scalability often overlooked.
• Major cause of application failure
• Hard to predict
• Hard to test/validate
• Reliance on proven designs and technologies is essential

For ICDE - application should be capable of handling a
peak load of 150 concurrent requests from ICDE clients.

• Relatively easy to simulate user load to validate this

School of Software Engineering Software Architecture, Spring 2014

34

School of Software Engineering Software Architecture, Spring 2014

34

Modifiability

Modifications to a software system during its lifetime are
a fact of life.
Modifiable systems are easier to change/evolve.
Modifiability should be assessed in context of how a
system is likely to change

• No need to facilitate changes that are highly unlikely to
occur

• Over-engineering!

School of Software Engineering Software Architecture, Spring 2014

35

School of Software Engineering Software Architecture, Spring 2014

35

Modifiability

Modifiability measures how easy it may be to change an
application to cater for new (non-)functional requirements.

• ‘may’ – nearly always impossible to be certain
• Must estimate cost/effort

Modifiability measures are only relevant in the context of
a given architectural solution.

• Components
• Relationships
• Responsibilities

School of Software Engineering Software Architecture, Spring 2014

36

School of Software Engineering Software Architecture, Spring 2014

36

Modifiability scenarios

Provide access to the application through firewalls in
addition to existing “behind the firewall” access.

Incorporate new features for self-service check-out
kiosks.

The COTS speech recognition software vendor goes out
of business and we need to replace this component.

The application needs to be ported from Linux to the
Microsoft Windows platform.

School of Software Engineering Software Architecture, Spring 2014

37

School of Software Engineering Software Architecture, Spring 2014

37

Modifiability analysis

Impact is rarely easy to quantify.
The best possible is a:

• Convincing impact analysis of changes needed
• A demonstration of how the solution can accommodate the

modification without change.
Minimizing dependencies increases modifiability

• Changes isolated to single components likely to be less
expensive than those that cause ripple effects across the
architecture.

School of Software Engineering Software Architecture, Spring 2014

38

School of Software Engineering Software Architecture, Spring 2014

38

Modifiability for ICDE

The range of events trapped and stored by the ICDE
client to be expanded.

Third party tools to communicate new message types.

Change database technology used

Change server technology used

School of Software Engineering Software Architecture, Spring 2014

39

School of Software Engineering Software Architecture, Spring 2014

39

Security

Difficult, specialized quality attribute:
• Lots of technology available
• Requires deep knowledge of approaches and solutions

Security is a multi-faceted quality …

School of Software Engineering Software Architecture, Spring 2014

40

School of Software Engineering Software Architecture, Spring 2014

40

Security

Authentication:
• Applications can verify the identity of their users and other

applications with which they communicate.
Authorization:

• Authenticated users and applications have defined access rights to the
resources of the system.

Encryption:
• The messages sent to/from the application are encrypted.

Integrity:
• This ensures the contents of a message are not altered in transit.

Non-repudiation:
• The sender of a message has proof of delivery and the receiver is

assured of the sender’s identity. This means neither can subsequently
refute their participation in the message exchange.

School of Software Engineering Software Architecture, Spring 2014

41

School of Software Engineering Software Architecture, Spring 2014

41

Security approaches

SSL
PKI
Web Services security
JAAS
Operating system security
Database security
Etc etc

School of Software Engineering Software Architecture, Spring 2014

42

School of Software Engineering Software Architecture, Spring 2014

42

ICDE security requirements

Authentication of ICDE users and third party ICDE tools
to ICDE server.
Encryption of data to ICDE server from 3rd party
tools/users executing remotely over an insecure network

School of Software Engineering Software Architecture, Spring 2014

43

School of Software Engineering Software Architecture, Spring 2014

43

Availability

Key requirement for most IT applications
Measured by the proportion of the required time it is
useable. E.g.

• 100% available during business hours
• No more than 2 hours scheduled downtime per week
• 24*7*52 (100% availability)

Related to an application’s reliability
• Unreliable applications suffer poor availability

Related to recoverability

School of Software Engineering Software Architecture, Spring 2014

44

School of Software Engineering Software Architecture, Spring 2014

44

Availability

Period of loss of availability determined by:
• Time to detect failure
• Time to correct failure
• Time to restart application

𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀

School of Software Engineering Software Architecture, Spring 2014

45

School of Software Engineering Software Architecture, Spring 2014

45

Availability

High availability typically refers to designs targeting
availability of 99.999 percent (“5 nines”) or greater.
Strategies for high availability:

• Eliminate single points of failure
• Replication and failover
• Automatic detection and restart

School of Software Engineering Software Architecture, Spring 2014

46

School of Software Engineering Software Architecture, Spring 2014

46

Availability

System Availability Requirements

Availability Downtime/90 Days Downtime/Year

99.0% 21 hours, 36 minutes 3 days, 15.6 hours
99.9% 2 hours, 10 minutes 8 hours, 0 minutes, 46 seconds
99.99% 12 minutes, 58 seconds 52 minutes, 34 seconds
99.999% 1 minute, 18 seconds 5 minutes, 15 seconds
99.999% 8 seconds 32 seconds

School of Software Engineering Software Architecture, Spring 2014

47

School of Software Engineering Software Architecture, Spring 2014

47

Availability for ICDE

Achieve 100% availability during business hours

Plenty of scope for downtime for system upgrade, backup
and maintenance.

Include mechanisms for component replication and
failover

School of Software Engineering Software Architecture, Spring 2014

48

School of Software Engineering Software Architecture, Spring 2014

48

Integration

Ease with which an application can be incorporated into a
broader application context

• Use component in ways that the designer did not originally
anticipate

Typically achieved by:
• Programmatic APIs
• Data integration

School of Software Engineering Software Architecture, Spring 2014

49

School of Software Engineering Software Architecture, Spring 2014

49

Integration strategies

Data – expose application data for access by other
components
API – offers services to read/write application data
through an abstracted interface
Each has strengths and weaknesses …

School of Software Engineering Software Architecture, Spring 2014

50

School of Software Engineering Software Architecture, Spring 2014

50

ICDE integration needs

Revolve around the need to support third party analysis
tools.
Well-defined and understood mechanism for third party
tools to access data in the ICDE data store.

School of Software Engineering Software Architecture, Spring 2014

51

School of Software Engineering Software Architecture, Spring 2014

51

Design trade-offs

QAs are rarely orthogonal
• They interact, affect each other

• Highly secure system may be difficult to integrate

• Highly available application may trade-off lower performance for
greater availability

• High performance application may be tied to a given platform, and
hence not be easily portable

Architects must create solutions that makes sensible design
compromises

• not possible to fully satisfy all competing requirements

• Must satisfy all stakeholder needs

• This is the difficult bit!

School of Software Engineering Software Architecture, Spring 2014

52

School of Software Engineering Software Architecture, Spring 2014

52

Summary

QAs are part of an application’s nonfunctional
requirements
Many QAs
Architect must decide which are important for a given
application

• Understand implications for application
• Understand competing requirements and tradeoffs

School of Software Engineering Software Architecture, Spring 2014

53

School of Software Engineering Software Architecture, Spring 2014

53

Discussion question

1. How many other qualities of software can you name
that were not covered in this lecture? With which other
qualities does it most often interact?

School of Software Engineering Software Architecture, Spring 2014

54

School of Software Engineering Software Architecture, Spring 2014

54

Misc. quality attributes

Portability
• Can an application be easily executed on a different

software/hardware platform to the one it has been
developed for?

Testability
• How easy or difficult is an application to test?

Supportability
• How easy an application is to support once it is deployed?

Usability

School of Software Engineering Software Architecture, Spring 2014

55

School of Software Engineering Software Architecture, Spring 2014

55

The End

http://house.sohu.com/msgview/2874/1/51168420.html

	Quality Attributes
	Lecture objectives
	Architecture and requirements
	Architecture and functionality
	Quality attributes
	Quality attributes
	A Case Study in Quality Attribute
	ICDE system
	ICDE schematic
	ICDE use cases
	Case study context
	Case study context
	ICDE version 2.0
	ICDE version 2.0
	Architecturally significant requirements for ICDE v2.0
	Summary
	What are quality attributes
	Quality attribute specification
	QAs of ICDE system
	Performance
	Performance - Throughput
	Performance - Response time
	Performance - Deadlines
	ICDE performance issues
	Scalability
	Scalability – Request load
	Scalability – Add more hardware …
	Scalability - Reality
	Scalability – J2EE example
	Scalability – Connections
	Scalability – Data size
	Scalability - Deployment
	Scalability thoughts and ICDE
	Modifiability
	Modifiability
	Modifiability scenarios
	Modifiability analysis
	Modifiability for ICDE
	Security
	Security
	Security approaches
	ICDE security requirements
	Availability
	Availability
	Availability
	Availability
	Availability for ICDE
	Integration
	Integration strategies
	ICDE integration needs
	Design trade-offs
	Summary
	Discussion question
	Misc. quality attributes
	The End

