
School of Software Engineering Software Architecture, Spring 2014

1

Software Architecture, Spring 2014 School of Software Engineering

1

What is Software Architecture and
Why It is important

March 2014
Ying Shen
SSE, Tongji University

School of Software Engineering Software Architecture, Spring 2014

2

School of Software Engineering Software Architecture, Spring 2014

2

Lecture objectives

This lecture will
• introduce and define the term “software architecture”
• explain the value that a software architecture brings to a

development project
• describe how software architecture is composed of several

different software structures
• give examples of several commonly used architectural

structures and show their uses

School of Software Engineering Software Architecture, Spring 2014

3

School of Software Engineering Software Architecture, Spring 2014

3

Architecting a dog house

Can be built by one person
Requires
 Minimal modeling
 Simple process
 Simple tools

School of Software Engineering Software Architecture, Spring 2014

4

School of Software Engineering Software Architecture, Spring 2014

4

Architecting a house

Built most efficiently and
timely by a team
Requires
 Modeling
 Well-defined process
 Power tools

School of Software Engineering Software Architecture, Spring 2014

5

School of Software Engineering Software Architecture, Spring 2014

5

Why we need software architecture

Why not just start coding and let things turn out somehow.

Software is increasingly complex.

Software is evolving, reused in new contexts.

The promise of off-the-shelf components with easy reuse
is just partial.

School of Software Engineering Software Architecture, Spring 2014

6

School of Software Engineering Software Architecture, Spring 2014

6

Why we need software architecture

Sometimes we need to adapt, wrap or even modify these
off-the-shelf components.

Too many components in software products, small and
large.

Large number of connections/dependencies between
these components.

How to make sure that SW development reaches the
intended goals of a project.

School of Software Engineering Software Architecture, Spring 2014

7

School of Software Engineering Software Architecture, Spring 2014

7

Why we need software architecture

Software is complex:
• >10KLOC (KLOC = 1000 lines of code): internal projects,

tools, hobby projects, minimum viable products.
• >100KLOC: small products, mobile apps.
• >1MLOC: operating systems, native frameworks, typical

desktop software applications, server side applications,
typical everyday product.

School of Software Engineering Software Architecture, Spring 2014

8

School of Software Engineering Software Architecture, Spring 2014

8

Why we need software architecture

How to understand software that has >1MLOC?

How to reach >1MLOC and still understand software?

How to reach >1MLOC without excessive complexity?

How a >1MLOC software evolves into the next version?

How a >1MLOC software or its components are reused
(pivoted)?

School of Software Engineering Software Architecture, Spring 2014

9

School of Software Engineering Software Architecture, Spring 2014

9

Dimensions of software complexity

Higher technical complexity
 - Embedded, real-time, distributed, fault-tolerant
 - Custom, unprecedented, architecture reengineering
 - High performance

Lower technical complexity
 - Mostly 4GL, or component-based
 - Application reengineering
 - Interactive performance

Higher
management
complexity
 - Large scale
 - Contractual
 - Many stake holders
 - “Projects”

Lower
management
complexity
 - Small scale
 - Informal
 - Single stakeholder
 - “Products”

Defense
 MIS System

Defense
Weapon System Telecom

Switch

CASE Tool

National Air Traffic
Control System

Enterprise IS
(Family of IS
Applications)

Commercial
Compiler

Business
Spreadsheet

IS Application
Distributed Objects

(Order Entry)

Small Scientific
Simulation

Large-Scale
Organization/Entity

Simulation

 An average software project:
 - 5-10 people
 - 10-15 month duration
 - 3-5 external interfaces
 - Some unknowns & risks

Embedded
Automotive

Software

IS Application
GUI/RDB

(Order Entry)

School of Software Engineering Software Architecture, Spring 2014

10

School of Software Engineering Software Architecture, Spring 2014

10

Architectural description has a natural position
in system design and implementation

Elements of a complete software system

User Model

Requirement

Architecture

Code

Executable

User view of problem

Software view of problem

Modules and connections

Algorithms & data structures

Data layouts, memory maps

School of Software Engineering Software Architecture, Spring 2014

11

School of Software Engineering Software Architecture, Spring 2014

11

Factors influencing architectures

Architectures are influenced by
• stakeholders of a system
• technical and organizational factors
• architect’s background

School of Software Engineering Software Architecture, Spring 2014

12

School of Software Engineering Software Architecture, Spring 2014

12

Customers

Customers are the people who pay for system
development.

Customer concerns include
• cost of the system
• usability and lifetime of the system
• interoperability with other systems
• time to market
• platform portability

School of Software Engineering Software Architecture, Spring 2014

13

School of Software Engineering Software Architecture, Spring 2014

13

End users

End users are the people who use the system. They
include

• “regular” users
• system administrators
• members of the development organization

End users are concerned with
• ease of use
• availability of function

School of Software Engineering Software Architecture, Spring 2014

14

School of Software Engineering Software Architecture, Spring 2014

14

Other stakeholders

Development organization

Marketers

Maintenance organization

School of Software Engineering Software Architecture, Spring 2014

15

School of Software Engineering Software Architecture, Spring 2014

15

Stakeholders of a system

Behavior,
performance,

security,
reliability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability! Neat features,
short time to market,
low cost, parity with
competing products!

Ohhhhh... Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

Marketing
stakeholder

School of Software Engineering Software Architecture, Spring 2014

16

School of Software Engineering Software Architecture, Spring 2014

16

Development organization concerns

Immediate business issues
• amortizing the infrastructure
• keeping cost of installation low
• utilizing personnel

Long-term business issues
• investing in an infrastructure to reach strategic goals
• investing in personnel

School of Software Engineering Software Architecture, Spring 2014

17

School of Software Engineering Software Architecture, Spring 2014

17

Development organization concerns

Organizational structure issues
• furthering vested interests, e.g.,

o maintaining an existing database organization
o supporting specialized expertise

• maintaining the standard method of doing business

School of Software Engineering Software Architecture, Spring 2014

18

School of Software Engineering Software Architecture, Spring 2014

18

Technical environment

Current trends: today’s information system will likely
employ a

• database management system
• Web browser for delivery and distribution across platforms

Available technology: decisions on using a centralized or
decentralized system depend on processor cost and
communication speed; both are changing quantities.

School of Software Engineering Software Architecture, Spring 2014

19

School of Software Engineering Software Architecture, Spring 2014

19

Architect’s background

Architects develop their mindset from their past
experiences.

• Prior good experiences will lead to replication of prior
designs.

• Prior bad experiences will be avoided in the new design.

School of Software Engineering Software Architecture, Spring 2014

20

School of Software Engineering Software Architecture, Spring 2014

20

Summary: influences on the architect

Architect’s influences
Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements
Architecture

System

Architect(s)

School of Software Engineering Software Architecture, Spring 2014

21

School of Software Engineering Software Architecture, Spring 2014

21

Factors influenced by architectures

Structure of the development organization

Enterprise goals of the development organization

Customer requirements

Architect’s experience

Technical environment

The architecture itself

School of Software Engineering Software Architecture, Spring 2014

22

School of Software Engineering Software Architecture, Spring 2014

22

Architecture influences the development
organization structure

Short term: Work units are organized around architectural
units for a particular system under construction.

Long term: When company constructs collection of similar
systems, organizational units reflect common
components (e.g., operating system unit or database
unit).

School of Software Engineering Software Architecture, Spring 2014

23

School of Software Engineering Software Architecture, Spring 2014

23

Architecture influences the development
organization enterprise goals

A successful system may establish a foothold in the
market niche.

Being known for developing particular kinds of systems
becomes a marketing device.

Architecture becomes a leveraging point for additional
market opportunities and networking.

School of Software Engineering Software Architecture, Spring 2014

24

School of Software Engineering Software Architecture, Spring 2014

24

Architecture influences customer
requirements

Knowledge of similar fielded systems leads customers to
ask for particular features.

Customers will alter their requirements on the basis of the
availability of existing systems.

School of Software Engineering Software Architecture, Spring 2014

25

School of Software Engineering Software Architecture, Spring 2014

25

Architecture influences the architect’s
experience and technical environment

Creation of a system affects the architect’s background.

Occasionally, a system or an architecture will affect the
technical environment.

• the WWW for information systems
• the three-tier architecture for database systems

School of Software Engineering Software Architecture, Spring 2014

26

School of Software Engineering Software Architecture, Spring 2014

26

A cycle of influences

Architectures and organizations influence each other.
• Influences to and from architectures form a cycle.
• An organization can manage this cycle to its advantage.

School of Software Engineering Software Architecture, Spring 2014

27

School of Software Engineering Software Architecture, Spring 2014

27

Architecture Business Cycle (ABC)

Architect’s influences
Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements
Architecture

System

Architect(s)

School of Software Engineering Software Architecture, Spring 2014

28

School of Software Engineering Software Architecture, Spring 2014

28

What is Software Architecture?

Definition from IEEE:

Architecture is the fundamental organization of a system
embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design
and evolution.
[IEEE 1471]

School of Software Engineering Software Architecture, Spring 2014

29

School of Software Engineering Software Architecture, Spring 2014

29

What is Software Architecture?

Definition from Kruchten: Rational Unified Process, 1999:

An architecture is the set of significant decisions about the
organization of a software system, the selection of structural
elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these elements into
progressively larger subsystems, and the architectural style
that guides this organization -- these elements and their
interfaces, their collaborations, and their composition.

School of Software Engineering Software Architecture, Spring 2014

30

School of Software Engineering Software Architecture, Spring 2014

30

What is Software Architecture?

Definition from Bass et al.: SA in practice, 2012:

The software architecture of a system is the set of structures
needed to reason about the system, which comprise software
elements, relations among them, and properties of both.

The exact structures to consider and the ways to
represent them vary according to engineering goals.

School of Software Engineering Software Architecture, Spring 2014

31

School of Software Engineering Software Architecture, Spring 2014

31

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures.

Module decomposition structure Class diagram Layer structure

School of Software Engineering Software Architecture, Spring 2014

32

School of Software Engineering Software Architecture, Spring 2014

32

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures.
o Component-and-connector (C&C) structure: runtime, dynamic

structure. Component is a runtime entity.

Picture comes from
(Lam et al. 2006)

Reference:
Lam et al., Secure Mobile Code
Execution Service, in Proc. LISA,
2006

School of Software Engineering Software Architecture, Spring 2014

33

School of Software Engineering Software Architecture, Spring 2014

33

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures.
o Component-and-connector (C&C) structure: runtime, dynamic

structure. Component is a runtime entity.
o Allocation structures

School of Software Engineering Software Architecture, Spring 2014

34

School of Software Engineering Software Architecture, Spring 2014

34

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures
o Component-and-connector (C&C) structure: runtime, dynamic

structure. Component is a runtime entity.
o Allocation structures

School of Software Engineering Software Architecture, Spring 2014

35

School of Software Engineering Software Architecture, Spring 2014

35

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures
o Component-and-connector (C&C) structure: runtime, dynamic

structure. Component is a runtime entity.
o Allocation structures
o No single structure can be the architecture.
o The set of candidate structures is not fixed or prescribed: whatever is

useful for analysis, communication, or understanding.

School of Software Engineering Software Architecture, Spring 2014

36

School of Software Engineering Software Architecture, Spring 2014

36

Implications of the definition

Architecture is a set of software structures
• Systems have many structures.

o Modules: Static structures
o Component-and-connector (C&C) structure: runtime, dynamic

structure. Component is a runtime entity.
o Allocation structures
o No single structure can be the architecture.
o The set of candidate structures is not fixed or prescribed: whatever is

useful for analysis, communication, or understanding.

• Not all structures of the software are architectural
o It should support reasoning about the system and the system’s

properties

School of Software Engineering Software Architecture, Spring 2014

37

School of Software Engineering Software Architecture, Spring 2014

37

Implications of the definition

Architecture is an abstraction
• Architecture defines components and how they interact.
• Architecture suppresses purely local information about

components; private details are not architectural.

School of Software Engineering Software Architecture, Spring 2014

38

School of Software Engineering Software Architecture, Spring 2014

38

Implications of the definition

Every software system has a software architecture.
• Every system is composed of elements and relationships

among them.
• In the simplest case, a system is composed of a single

element, related only to itself.
Just having an architecture is different from having an
architecture that is known to everyone.

• architecture versus specification of the architecture
• architecture recovery and conformance
• rationale for the architecture

School of Software Engineering Software Architecture, Spring 2014

39

School of Software Engineering Software Architecture, Spring 2014

39

Implications of the definition

Architecture includes behavior
• This means that box-and-line drawings alone are not

architectures, but a starting point.
• You might imagine the behavior of a box labeled

“database” or “executive.”
• You need to add specifications and properties.

School of Software Engineering Software Architecture, Spring 2014

40

School of Software Engineering Software Architecture, Spring 2014

40

Architecture structures and views

Human body

skeletal vascular X-ray

Physiological Structures

School of Software Engineering Software Architecture, Spring 2014

41

School of Software Engineering Software Architecture, Spring 2014

41

Architecture structures and views

In a house, there are plans for
• rooms
• electrical wiring
• plumbing
• ventilation

Each of these constitutes a “view” of the house.
• used by different people
• used to achieve different qualities in the house
• serves as a description and prescription.

So it is with software architecture.

School of Software Engineering Software Architecture, Spring 2014

42

School of Software Engineering Software Architecture, Spring 2014

42

Architecture structures and views

A view is a representation of a coherent set of
architectural elements. It consists of a representation of a
set of elements and the relations among them.
A structure is the set of elements existing in software or
hardware.

A view is a representation of a structure.
• Module view vs. module structure

School of Software Engineering Software Architecture, Spring 2014

43

School of Software Engineering Software Architecture, Spring 2014

43

Three kinds of structures

Module structures embody decisions as to how the
system is to be structured as a set of code or data units
that have to be constructed or procured.

• The elements are modules such as classes, layers.
• Focus on the functional responsibility of each module, not

emphasize runtime issue.

School of Software Engineering Software Architecture, Spring 2014

44

School of Software Engineering Software Architecture, Spring 2014

44

Three kinds of structures

Useful module structures:
• Decomposition structure

 Units: modules
 Relations: is a submodule of
 Used for: resource

allocation and protect
structuring and planning;
information hiding,
encapsulation;
configuration control

 Affected attributes include:
modifiability

School of Software Engineering Software Architecture, Spring 2014

45

School of Software Engineering Software Architecture, Spring 2014

45

Three kinds of structures

Useful module structures:
• Uses structure

 Units: modules
 Relations: uses, i.e. requires the correct presence of
 Used for: engineering subsets, engineering extensions
 Affected attributes include: “subsetability”, extensibility

School of Software Engineering Software Architecture, Spring 2014

46

School of Software Engineering Software Architecture, Spring 2014

46

Three kinds of structures

Useful module structures:
• Layer structure

 Units: layers
 Relations: requires the

correct presence of, uses the
services of, provides
abstraction to

 Used for: incremental
development, implementing
systems on top of “virtual
machines”

 Affected attributes include:
portability

School of Software Engineering Software Architecture, Spring 2014

47

School of Software Engineering Software Architecture, Spring 2014

47

Three kinds of structures

Useful module structures:
• Class (or generalization) structure

 Units: classes, objects
 Relations: inherits from or is an

instance of
 Used for: in object-oriented design

systems, factoring out commonality;
planning extensions of functionality

 Affected attributes include:
modifiability and extensibility

School of Software Engineering Software Architecture, Spring 2014

48

School of Software Engineering Software Architecture, Spring 2014

48

Three kinds of structures

Useful module structures:
• Data model

 Units: data entities
 Relations: {one, many}-to-

{one, many}, generalizes,
specializes

 Used for: engineering global
data structures for
consistency and performance

 Affected attributes include:
modifiability, performance

School of Software Engineering Software Architecture, Spring 2014

49

School of Software Engineering Software Architecture, Spring 2014

49

Three kinds of structures

Module view help answer questions:
 What is the primary functional responsibility assigned to each module?
 What other software elements is a module allowed to use?
 What other software does it actually use and depend on?
 What modules are related to other modules by generalization or

specialization (i.e., inheritance) relationships?

Looking at its module views is an excellent way to reason
about a system's modifiability.

School of Software Engineering Software Architecture, Spring 2014

50

School of Software Engineering Software Architecture, Spring 2014

50

Three kinds of structures

Component-and-connector structures embody
decisions as to how the system is to be structured as a
set of elements that have runtime behavior (components)
and interactions (connectors).

• The elements are runtime components (such as services,
peers, clients, servers, filters) and connectors (such as call-
return, process synchronization operators, pipes).

School of Software Engineering Software Architecture, Spring 2014

51

School of Software Engineering Software Architecture, Spring 2014

51

Three kinds of structures

Useful C&C structure:
• Service structure

 Units: services, ESB,
registry, others

 Relations: runs
concurrently with,
may run concurrently
with, excludes,
precedes, etc.

 Used for: scheduling
analysis, performance
analysis

 Affected attributes
include:
lnteroperability,
modifiability

School of Software Engineering Software Architecture, Spring 2014

52

School of Software Engineering Software Architecture, Spring 2014

52

Three kinds of structures

Useful C&C structure:
• Concurrency structure

 Units: processes, threads
 Relations: can run in parallel
 Used for: identifying locations where resource contention exists, or

where threads may fork, join, be created, or be killed
 Affected attributes include: performance, availability

School of Software Engineering Software Architecture, Spring 2014

53

School of Software Engineering Software Architecture, Spring 2014

53

Three kinds of structures

C&C views help answer questions:
 What are the major executing components and how do they interact at

runtime?
 What are the major shared data stores?
 Which parts of the system are replicated?
 How does data progress through the system?
 What parts of the system can run in parallel?
 Can the system's structure change as it executes and, if so, how?

C&C views are crucially important for reasoning about the
system's runtime properties such as performance,
security, availability.

School of Software Engineering Software Architecture, Spring 2014

54

School of Software Engineering Software Architecture, Spring 2014

54

Three kinds of structures

Allocation structures embody decisions as to how the
system will relate to nonsoftware structures in its
environment (such as CPUs, file systems, networks,
development teams, etc.).

• They show the relationship between the software elements
and elements in one or more external environments in
which the software is created and executed.

School of Software Engineering Software Architecture, Spring 2014

55

School of Software Engineering Software Architecture, Spring 2014

55

Three kinds of structures

Useful allocation structures:
• Deployment structure

 Units: software elements (usually a
process from a C&C view) and
hardware entities (processors)

 Relations: allocated-to, migrates-to
 Used for: performance, availability,

security analysis
 Affected attributes include:

performance, data integrity,
security, and availability

School of Software Engineering Software Architecture, Spring 2014

56

School of Software Engineering Software Architecture, Spring 2014

56

Three kinds of structures

Useful allocation structures:
• Implementation structure
 Units: software elements

(usually modules), file
structure

 Relations: stored in
 Used for: configuration

control, integration, test
activities

 Affected attributes include:
development efficiency

School of Software Engineering Software Architecture, Spring 2014

57

School of Software Engineering Software Architecture, Spring 2014

57

Three kinds of structures

Useful allocation structures:
• Work assignment structure

 Units: modules and
organizational units

 Relations: assigned to
 Used for: Project

management, best use of
expertise and available
resources, management of
commonality

 Affected attributes include:
development efficiency

School of Software Engineering Software Architecture, Spring 2014

58

School of Software Engineering Software Architecture, Spring 2014

58

Three kinds of structures

Allocation views help answer questions:
 What processor does each software element execute on?
 In what directories or files is each element stored during development,

testing, and system building?
 What is the assignment of each software element to development

teams?

School of Software Engineering Software Architecture, Spring 2014

59

School of Software Engineering Software Architecture, Spring 2014

59

Relationship between structures

Each of these structures provides a different perspective
and design handle on a system.

They are not independent. Elements of one structure will
be related to elements of other structures.

Two views of a client-server system

School of Software Engineering Software Architecture, Spring 2014

60

School of Software Engineering Software Architecture, Spring 2014

60

Which structures to choose?

You should think about how the various structures
available provide insight and leverage into the system's
most important quality attributes, and then choose the
ones that will play the best role in delivering those
attributes.

School of Software Engineering Software Architecture, Spring 2014

61

School of Software Engineering Software Architecture, Spring 2014

61

What are structures used for?

Documentation vehicle for
• current development
• future development
• managers
• customers

Engineering tool to help achieve qualities

School of Software Engineering Software Architecture, Spring 2014

62

School of Software Engineering Software Architecture, Spring 2014

62

Architectural structures summary

Structures are related to each other in complicated ways.

In some systems, different structures collapse into a
single one. (For example, process structure may be the
same as module structure for extremely small systems.)

Lesson: Choose the structures that are useful to the
system being built and to the achievement of qualities
that are important to you.

School of Software Engineering Software Architecture, Spring 2014

63

School of Software Engineering Software Architecture, Spring 2014

63

Views

An architecture is a very complicated construct -- too
complicated to be seen all at once.
Views are a way to manage complexity.

• 1974: Parnas observed that software is composed of many
structures

• 1992: Perry and Wolf recognize that, similar to buildings
(with plumbing and electrical and wall diagrams), different
views of a system are required.

• 1995: Kruchten defined the “4+1 views” approach to
software architecture.

• 2000: Hofmeister, Nord, and Soni defined the “Siemens
Four Views” approach to software.

School of Software Engineering Software Architecture, Spring 2014

64

School of Software Engineering Software Architecture, Spring 2014

64

Views

A view is a representation of a
set of architectural elements
and the relations associated
with them.

Not all architectural elements -
- some of them.

A view binds element types
and relation types of interest,
and shows those.

All information

Some information

School of Software Engineering Software Architecture, Spring 2014

65

School of Software Engineering Software Architecture, Spring 2014

65

Why is architecture important?

Architecture is important for the following reasons:
1. Inhibiting or enabling a system’s quality attributes
2. Reasoning about and managing change
3. Enhancing communication among stakeholders
4. Carrying earliest design decisions about a system
5. Defining constraints on an implementation
6. Influencing the organizational structure
7. Supplying a transferable, reusable model
….

School of Software Engineering Software Architecture, Spring 2014

66

School of Software Engineering Software Architecture, Spring 2014

66

Inhibiting or enabling a system’s quality
attributes

For example:

If you desire Examine
performance inter-component communication
modifiability component responsibilities
security inter-component communication,
 specialized components (e. g., kernels)
scalability localization of resources
ability to subset inter-component usage
reusability inter-component coupling

The architecture influences qualities, but does not
guarantee them.

School of Software Engineering Software Architecture, Spring 2014

67

School of Software Engineering Software Architecture, Spring 2014

67

Reasoning about and managing change

An architecture helps reason about and manage change.
• important since ≈ 80% of effort in systems occurs after

deployment
Architecture divides all changes into three classes:

• local: modifying a single component
• non-local: modifying several components
• architectural: modifying the gross system topology,

communication, and coordination mechanisms
A “good” architecture is one in which the most likely
changes are also the easiest to make.

School of Software Engineering Software Architecture, Spring 2014

68

School of Software Engineering Software Architecture, Spring 2014

68

Enhancing communication among
stakeholders

Architecture provides a common frame of reference in
which competing interests may be exposed and
negotiated.

• negotiating requirements with users and other stakeholders
• keeping the customer informed of progress and cost
• implementing management decisions and allocations

School of Software Engineering Software Architecture, Spring 2014

69

School of Software Engineering Software Architecture, Spring 2014

69

Carrying earliest design decisions about a
system

Any design, in any discipline, can be viewed as a set of
decisions.

• Example: painting a picture
An architecture design can also be viewed as a set of
decisions.

• The early design decisions constrain the decisions that
follow, and changing these decisions has enormous
ramifications.

School of Software Engineering Software Architecture, Spring 2014

70

School of Software Engineering Software Architecture, Spring 2014

70

Carrying earliest design decisions about a
system
Some early design decisions embodied by software architecture:

• Will the system run on one processor or be distributed across multiple
processors?

• Will the software be layered? If so, how many layers will there be?
What will each one do?

• Will components communicate synchronously or asynchronously? Will
they interact by transferring control or data or both?

• Will the system depend on specific features of the operating system or
hardware?

• Will the information that flows through the system be encrypted or
not?

• What operating system will we use?

School of Software Engineering Software Architecture, Spring 2014

71

School of Software Engineering Software Architecture, Spring 2014

71

Defining constraints on an implementation

An architecture defines constraints on an implementation.
• Architectures are descriptive and prescriptive.

o descriptive for communication
o prescriptive for design and implementation

• Global resource allocation decisions constrain
implementations of individual components.

• System tradeoffs regarding quality attributes are in the
architectural realm.

School of Software Engineering Software Architecture, Spring 2014

72

School of Software Engineering Software Architecture, Spring 2014

72

Influencing the organizational structure

The architecture dictates organizational structure for
development/maintenance efforts. Examples include

• division into teams
• units for budgeting, planning
• basis of work breakdown structure
• organization for documentation
• organization for CM libraries
• basis of integration
• basis of test plans, testing
• basis of maintenance

Once decided, architecture is extremely hard to change!

School of Software Engineering Software Architecture, Spring 2014

73

School of Software Engineering Software Architecture, Spring 2014

73

Architecture is basis for incremental
development

An architecture helps with evolutionary prototyping and
incremental delivery.

• Architecture serves as a skeletal framework into which
components can be plugged.

• By segregating functionality into appropriate components,
experimentation is easier.

• Risky elements of the system can be identified via the
architecture and mitigated with targeted prototypes.

School of Software Engineering Software Architecture, Spring 2014

74

School of Software Engineering Software Architecture, Spring 2014

74

Architecture is a reusable model

An architecture is an abstraction: enables a one-to-many
mapping (one architecture, many systems).

Systems can be built from large, externally developed
components that are tied together via architecture.

Architecture is the basis for product (system)
commonality.

Entire software product lines can share a single
architecture.

School of Software Engineering Software Architecture, Spring 2014

75

School of Software Engineering Software Architecture, Spring 2014

75

Architecture is a reusable model

A component’s functionality can be separated from its
interconnection mechanisms.

Often, a component’s packaging makes it difficult to reuse
a component. For example, if you need

• an object, you can’t use a task
• a task, you can’t use an object
• to invoke with a pipe, you can’t use a called program
• a program, you can’t use a file

School of Software Engineering Software Architecture, Spring 2014

76

School of Software Engineering Software Architecture, Spring 2014

76

Architecture is a reusable model

Less is more: It pays to restrict the vocabulary of design
alternatives.

Architectural styles serve as that restricted vocabulary of
design alternatives.

Working with known styles
• reduces learning time
• enhances communication
• takes advantage of known style properties (e.g.,

performance, security, reliability)

School of Software Engineering Software Architecture, Spring 2014

77

School of Software Engineering Software Architecture, Spring 2014

77

Architecture is a reusable model

Architectures can enable template-based development.

Templates may be used to code component interaction
frameworks. The developer fills in the unique part, and
reuses the common part.

Templates enhance

• speed of development
• reliability

o source of many errors eliminated
o fixing one error improves many places

School of Software Engineering Software Architecture, Spring 2014

78

School of Software Engineering Software Architecture, Spring 2014

78

Architecture is a reusable model

In summary, an architecture forms a reusable model.
• enables product lines
• enables systems to be built from externally developed

components
• separates functionality from interconnection mechanisms
• provides a vocabulary of design
• enables template-based component development

School of Software Engineering Software Architecture, Spring 2014

79

School of Software Engineering Software Architecture, Spring 2014

79

What makes a “Good” architect?

People skills: must be able to
• negotiate competing interests of multiple stakeholders
• promote inter-team collaboration

Technical skills: must
• understand the relationships between qualities and

structures
• possess a current understanding of technology
• understand that most requirements for an architecture are

not written down in any requirements document

School of Software Engineering Software Architecture, Spring 2014

80

School of Software Engineering Software Architecture, Spring 2014

80

What makes a “Good” architect?

Communication skills: must be able to
• clearly convey the architecture to teams (both verbally and

in writing)
• listen to and understand multiple viewpoints

School of Software Engineering Software Architecture, Spring 2014

81

School of Software Engineering Software Architecture, Spring 2014

81

What makes a “Good” architecture?

Fitness for purpose

Achievable within a reasonable budget

Achievable within a reasonable time

School of Software Engineering Software Architecture, Spring 2014

82

School of Software Engineering Software Architecture, Spring 2014

82

What makes a “Good” architecture?

One measure of a good architecture is the how long it
survives as a solution to a particular problem and in how
many context can be used without changes.

School of Software Engineering Software Architecture, Spring 2014

83

School of Software Engineering Software Architecture, Spring 2014

83

What makes a “Good” architecture?

There is no clear, unified, objective way to define what is
a good architecture.

There are good and bad practices.

There are patterns and anti-patterns.

If a solution is good, usually survives the test of time.

There are always good examples to get inspiration from.

Solutions that have been around for a long time.

Solutions that work in multiple contexts and environments
independent of the product type.

School of Software Engineering Software Architecture, Spring 2014

84

School of Software Engineering Software Architecture, Spring 2014

84

Examples of good architectures

Good architectural styles exits now in most fields.
Pipes are a good model of combining multiple modules in
processing data.
Pipes can be extended into flow-based programming.
Relational databases are a stable solution of a large
group of database problems.

School of Software Engineering Software Architecture, Spring 2014

85

School of Software Engineering Software Architecture, Spring 2014

85

Examples of good architectures

The filing system is a good example of stable
architecture:

• In early computing it was not clear how to access/organize
persistent data.

• The hierarchical filing system solves this problem.
• A small, clearly defined and easy to use interface.
• Interface allows arbitrary implementation: various file

systems focusing on speed, failure tolerance, etc.
For user interfaces the Cocoa (NextStep) UI framework
provides a good inspiration.
POSIX is a good interface for OS designs.

School of Software Engineering Software Architecture, Spring 2014

86

School of Software Engineering Software Architecture, Spring 2014

86

Lecture summary

Architecture involves more than just technical
requirements for a system. It also involves non-technical
factors, such as

• the architect’s background
• the development environment
• the business goals of the sponsoring organization

Architecture influences the factors that affect it.
• Architects learn from experience.
• The development environment is expanded and altered.
• Businesses gain new marketing possibilities.

School of Software Engineering Software Architecture, Spring 2014

87

School of Software Engineering Software Architecture, Spring 2014

87

Discussion Questions

1. Software architecture is often compared to the
architecture of buildings as a conceptual analogy.
What are the strong points of that analogy? What is
the correspondence in buildings to software
architecture structures and views? What are the
weaknesses of the analogy? When does it break
down?

School of Software Engineering Software Architecture, Spring 2014

88

School of Software Engineering Software Architecture, Spring 2014

88

The End

http://house.sohu.com/msgview/2874/1/51168420.html

	What is Software Architecture and Why It is important
	Lecture objectives
	Architecting a dog house
	Architecting a house
	Why we need software architecture
	Why we need software architecture
	Why we need software architecture
	Why we need software architecture
	Dimensions of software complexity
	Architectural description has a natural position�in system design and implementation
	Factors influencing architectures
	Customers
	End users
	Other stakeholders
	Stakeholders of a system
	Development organization concerns
	Development organization concerns
	Technical environment
	Architect’s background
	Summary: influences on the architect
	Factors influenced by architectures
	Architecture influences the development organization structure
	Architecture influences the development organization enterprise goals
	Architecture influences customer requirements
	Architecture influences the architect’s experience and technical environment
	A cycle of influences
	Architecture Business Cycle (ABC)
	What is Software Architecture?
	What is Software Architecture?
	What is Software Architecture?
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Implications of the definition
	Architecture structures and views
	Architecture structures and views
	Architecture structures and views
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Three kinds of structures
	Relationship between structures
	Which structures to choose?
	What are structures used for?
	Architectural structures summary
	Views
	Views
	Why is architecture important?
	Inhibiting or enabling a system’s quality attributes
	Reasoning about and managing change
	Enhancing communication among stakeholders
	Carrying earliest design decisions about a system
	Carrying earliest design decisions about a system
	Defining constraints on an implementation
	Influencing the organizational structure
	Architecture is basis for incremental development
	Architecture is a reusable model
	Architecture is a reusable model
	Architecture is a reusable model
	Architecture is a reusable model
	Architecture is a reusable model
	What makes a “Good” architect?
	What makes a “Good” architect?
	What makes a “Good” architecture?
	What makes a “Good” architecture?
	What makes a “Good” architecture?
	Examples of good architectures
	Examples of good architectures
	Lecture summary
	Discussion Questions
	The End

