
Tutorial 4

1. Consider the decision tree shown in the following figure:

Training:				
Instance	Α	В	С	Class
1	0	0	0	+
3	0	0	1	+
3	0	1	0	+
4	0	1	1	_
5	1	0	0	+
6	1	0	0	+
7	1	1	0	_
8	1	0	1	+
9	1	1	0	_
10	1	1	0	_

- a. Estimate the generalization error of the tree by using the resubstitution estimate.
- b. Estimate the generalization error by using a penalty term of 0.5 for each leaf node.
- 2. We consider the decision tree constructed for the credit risk estimation problem in the lecture notes. Suppose a penalty term of 0.6 is assigned to each leaf node.
 - a. Estimate the generalization error if the sub-tree associated with the attribute **credit history** in the middle branch (\$15k to \$35k) is replaced with a leaf node.
 - b. Estimate the generalization error if, instead, the sub-tree associated with the attribute **credit history** in the right branch (over \$35k) is replaced with a leaf node.
 - c. Estimate the generalization error if both of the above two operations are performed together.