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"Generative Adversarial Networks is the most interesting

idea in the last ten years in machine learning."
Yann LeCun, Director, Facebook Al
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e |ntroduction

e Theoretical Part

e Application Part

e Existing Implementations Using Tensorflow
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Introduction

e Deep CNNs mentioned in our last lectures actually are kinds of
supervised learning tools
e Supervised learning can solve many problems
e But they need labeled data which is quite expensive to obtain

e Supervised deep learning is quite powerful; that is because it can
learn a good representation of data

Q: Is there any other ways to learn representations of data?

A: Unsupervised learning. Using unsupervised learning, good
intermediate representations could be learned from unlimited amount of
unlabeled data, which can then be used in a variety of supervised
learning tasks such as image classification
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Introduction

The rapid progress of Al in the last few years are largely the result of advances in
deep learning and neural nets, combined with the availability of large datasets and
fast GPUs. We now have systems that can recognize images with an accuracy that
rivals that of humans. This will lead to revolutions in several domains such as
autonomous transportation and medical image understanding. But all of these
systems currently use supervised learning in which the machine is trained with
inputs labeled by humans. The challenge of the next several years is to let
machines learn from raw, unlabeled data, such as video or text. This is known as
unsupervised learning. Al systems today do not possess “common sense”, which
humans and animals acquire by observing the world, acting in it, and
understanding the physical constraints of it. Some of us see unsupervised learning
as the key towards machines with common sense.

--Yann LeCun 2016 at CMU
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Introduction

e GANSs, short for Generative Adversarial Networks

e |t is an unsupervised learning theory
e They can learn to create data that is similar to data that we give them

e The intuition behind this is that if we can get a model to write high-quality news
articles for example, then it must have also learned a lot about news articles in
general. Or in other words, the model should also have a good internal
representation of news articles. We can then hopefully use this representation to
help us with other related tasks, such as classifying news articles by topic

e Based on GANs, a lot interesting works can be done
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e Theoretical Part
e Generative Adversarial Networks (GAN)
e Deep Convolution GAN (DCGAN)
e Wasserstein GAN (WGAN)
e Conditional GANs (cGANSs)

e Application Part
e Existing Implementations Using Tensorflow
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@@ Generative Adversarial Networks!!]

e The main idea behind a GAN is to have two competing neural network
models

e One takes noise as input and generates samples (and so is called the generator)

e The other model (called the discriminator) receives samples from both the generator
and the training data, and has to be able to distinguish between the two sources

e These two networks play a continuous game, where the generator is learning to
produce more and more realistic samples, and the discriminator is learning to get
better and better at distinguishing generated data from real data

e These two networks are trained simultaneously, and the hope is that the competition
will drive the generated samples to be indistinguishable from real data

[1] I. J. Goodfellow et al., Generative adversarial nets, NIPS, 2014
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@@ Generative Adversarial Networks

e A coarse architecture of GAN

[ noise J

generator
{data sample} [discriminator] { ggg;rsltgr J
data
sample?
[yes/no}
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Generative Adversarial Networks

e A more formal description
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/ Generative Adversarial Networks

e A more formal description

* G is the generator, mapping the input noise variable z to data space as G(Z;Hg)

 Dis the discriminator D(x;6,) , outputting a single scalar; D(x) represents the
probability that x came from the data

e We train D to maximize the probability of assigning the correct label to both training
samples and samples from G

* We simultaneously train G to minimize log (1— D(G(z)))

D and G play the two-player minimax game with the value function V(G, D),

min max V(D.G)=E, ,_,[logD(®)]+E,_, , [log(1-D(G(2)))]}
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Generative Adversarial Networks

e Algorithm for training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ... z"™)} from noise prior p,(z).
e Sample minibatch of m examples {z'V,..., 2™} from data generating distribution
Pdata (T ).
e Update the discriminator by ascending its stochastic gradient:
m
1 (i) (i)
ng—g log D (« +log(1—-D (G (= )
m
i=1
end for _
e Sample minibatch of m noise samples {z*), ..., z'"™} from noise prior pgy(z).

e Update the generator by descending its stochastic gradient:

m

Vog%Zlog (1 - D (G (z“’))) :

=
end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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@@ Generative Adversarial Networks

e Some notes
G and D are trained alternatively
e When D is trained, parameters related to G are fixed
e When G is trained, parameters related to D are fixed
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@@ Generative Adversarial Networks—Example

Problem: We want to train a G(z), mapping a given random number Z to a number
conforms to N(u,0”)

Solution

Prepare real data: generate a set {Xi}:\il, and each X is drawn from N(x, o)

Train the GAN, and finally we can get a G, which can map any given z to G(2),
satisfying the requirement

This example and the code for Ubuntu+TensorFlow+Python can be found at

http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
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Generative Adversarial Networks—Example

Network structures of G and D of this example (I highly recommend you read through the
codes)
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@@ Problems of Goodfellow’s GAN

e There are some drawbacks of the original Goodfellow’s GAN

e |n general, they are notoriously difficult to train (refer to the gif in previous
slide)

e Controlling the image diversity of the generated samples is difficult

e [n many cases, the generated images suffer from being noisy and
incomprehensible

e Balancing the convergence of the discriminator and of the generator is a
challenge

e Easily suffer from modal collapse, a failure mode in which just one image is

learned
Try to solve these problems

Researchers proposed different GAN variants
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e Deep Convolutional GAN (DCGAN)
e Wasserstein GAN (WGAN)
e Conditional GANs (cGANSs)

e Application Part
e Existing Implementations Using Tensorflow
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&g Deep Convolutional GAN (DCGAN)!1]
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e DCGAN is the first successful work combining GANs with deep
convolutional neural networks

e |t can be trained to generate higher resolution and sharper images
than Goodfellow’s GAN

e DCGAN can be more easily and robustly trained than the original GAN

e The authors demonstrate that the intermediate representations learned by
DCGAN can be successfully used for supervised tasks

[1] A. Radford et al., Unsupervised representation learning with deep convolutional generative adversarial
networks, ICLR, 2016
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Deep Convolutional GAN (DCGAN)

e Architecture guidelines for DCGAN

e Replace any pooling layers with strided convolutions (discriminator) and
fractional-strided convolutions (generator)

e Use batchnorm in both the generator and the discriminator
e Remove fully connected hidden layers for deeper architectures

e Use RelLU activation in generator for all layers except for the output, which
uses Tanh

e Use LeakyRelLU activation in the discriminator for all layers
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.
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Face images generated
by DCGAN
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e Wassertein GAN (WGAN)
e Conditional GANs (cGANSs)

e Application Part
e Existing Implementations Using Tensorflow
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@@ Problems of Goodfellow’s GANI!

e Goodfellow’s GAN is difficult to train

e The training process is quite unstable
e Generated samples have a low diversity

e There is no a general loss function to indicate the training progress, i.e., there
is no indicator to tell you when to stop training

What is the root reason?

[1] M. Arjovsky et al., Towards principled methods for training generative adversarial networks, ICLR, 2017
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%’ Problems of Goodfellow’s GAN—Prerequisite

e Kullback—Leibler divergence (KL-divergence)
e |t is also called relative entropy
e |t is used to measure the distance between two distributions
e KL divergence is asymmetric

KL(P,|IP,)=E, {mgﬂ}
PZ
In discrete case itis, KL(P,[|P,)=) PR (x)log EEX;
pl( )dX

2

In continuous case itis, KL(P || P,) = j p,(X)log

* It has a unique minimum at P (Xx) = P,(X)

Note that, usually we define: ()10g9 =0, Ologg =0, plog% = +00
q

0
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@@ Problems of Goodfellow’s GAN—Prerequisite

s
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e Jensen—Shannon divergence (JS-divergence)
e |t is defined based on KL-divergence
e Different from KL-divergence, it is symmetric

1 P+P 1 P+P
JS(PR||P)==KL| P || —= |[+=KL| P, || /—=
(RIIR) =3 (lll 5 ) 5 (2II > j
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@@ Problems of Goodfellow’s GAN

When training the discriminator, we need to minimize
L(D) — _Ex~Pr [lOg D(X)] — EX~Pg (X) [lOg(l o D(X))]

where P is the distribution of the real data and F, is the distribution of the generated data
For a specified sample X, the loss is

—F (X)1og(D(x)) — P, (x) log(1— D(x))
Thus, the optimal discriminator D* should be of the form,

AT
P, () + P, (X)

When training the generator, we need to minimize

L(9,) =E,.p, [logD(¥)]+E, 5 , [log(1-D(x))] (2)

When D is optimal, (2) becomes

D'(x) =
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@@ Problems of Goodfellow’s GAN

P.(%
~(ROO+R,(0)

P+P P+P
=KL| P || 5 = |+KL| P, | 5 L |—2log?2

=2JS(P,||P,)-2log2

Thus, when training the generator, the JS divergence between P, and P, is being
minimized. It seems reasonable.

P,(X)
~(ROO+R,(0)

~2log2 (3)

L(g,)= Ex~Pr log + Ex~Pg(x) log

However, actually it is nearly impossible to minimize JS(Pr | Pg)

Surprised? Why?

‘ abad.
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Problems of Goodfellow’s GAN

Lemma 3. Let M and P be two regular submanifolds of R? that don't perfectly align and don’t
have full dimension. Let L = M NP. If M and P don’t have boundary, then L is also a manifold,
and has strictly lower dimension than both the one of M and the one of P. If they have boundary,
L is a union of at most 4 strictly lower dimensional manifolds. In both cases, £ has measure 0 in

both M and P.

In our case, P, and P, are two regular submanifolds that don’t perfect align and don’t
have full dimensions, thus the intersection of P, and P has the measure 0

Thus,

JS(Pr | Pg)=%IR(X)log 1 P.(X) dX+%IPg(X)log 1 I:)g (X) dx
S (ROO+R M) S (ROO+R ()
:lje(x)log P.(X) dX-l-ljF’g (X)log 1Pg (X) dx
2 LI ~R)

1 1
=—log2+—log2=1og?2
7 g 7 g g
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Problems of Goodfellow’s GAN

e Finally, we have the following observations

e When the discriminator is optimal, optimizing the generator equals
minimizing JS(P.[|P,) ; however, since the overlap between P, and P, is
negligible, JS(Pr I Pg) is actually a constant; that means, for SGD based
optimization methods, the gradient is zero!

e When the discriminator is far from optimal, the gradient information obtained
when training the generator will be less indicative, i.e., they are not quite
useful to train a strong generator

e Only when the discriminator is either not too bad or not too good, the training
process can be continued; that is the root cause why the training process for
GAN is difficult to control

Any solutions?
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Wasserstein GAN (WGAN)—Pre-requisite

e Earth-mover distance (EMD)

Assume that signature P has m clusters with P = {(p1, wp1), (P2, Wp2), - - - » (Pm, Wpm ) }. where p; is the cluster representative and wy; is the weight of the cluster.
Similarly another signature @ = {(q1,wq1), (g2, Wg2), - - -, (gn, Wgn )} has 1 clusters. Let D = [d; ;] be the ground distance between clusters p; and g;.

We want to find a flow F = [f; j], with fi; the flow between p; and g;, that minimizes the overall cost.
m n
min}_ > fidi
i=1 j=1
subjected to the constraints:
fi’j 20,1 gzgm,l g}fn

T
Y fii<wp,1<i<m
ji=1

m
Zfi‘j Swg,l1<j<n
i=1

The optimal flow F' is found by solving this linear optimization problem. The earth mover's distance is defined as the work normalized by the total flow:

Yoty 2 fidi
EMD(P,Q]: i=1 Luj=1 /%] %]

ZL Z;‘l:l fi.j




7 Wasserstein GAN (WGAN)—Pre-requisite

e Earth-mover distance (EMD)

e Note that: in general, P and Q in EMD can have different integrals (The total
qguantity of supplied goods and the total volume of the warehouses can be
different)

e When the two distributions have the same integral, as in normalized
histograms or probability density functions, the EMD is equivalent to the
Wasserstein distance between the two distributions
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7 Wasserstein GAN (WGAN)—Pre-requisite

e \Wasserstein distance

Suppose P,(X) and P,(y) are two distributions
y € H(P1, Pz) , Which is the set of all distributions whose marginals are P,(X) and P,(y) respectively

Thatis, ). 7(%Y)=P,(¥), D 7(X,y)=P(X)

The Wasserstein distance (equal to EMD) is defined as,

WigR =inf| Syl |- € (k-]

SSE, Tongji University
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&g Wasserstein GAN (WGAN)—Pre-requisite
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e \Wasserstein distance

e |t is better than KL-divergence or JS-divergence in that even though the
two distributions do not overlap, it can still measure their difference

e Thus, it can used to substitute the JS divergence used in Goodfellow’s
GAN

SSE, Tongji University



@@ Wasserstein GAN (WGAN)—Pre-requisite

e \Wasserstein distance

Example 1 (Learning parallel lines). Let Z ~ U|0, 1| the uniform distribution on
the unit interval. Let Pg be the distribution of (0,Z) € R? (a 0 on the x-axis and
the random variable Z on the y-axis), uniform on a straight vertical line passing
through the origin. Now let gg(z) = (0, z) with 0 a single real parameter. It 1s easy
to see that in this case,

L I-F(FU.P{;) = ||£.J'|1

log 2 i 0-£0,

JS(Py. Pp) =
* d5\to:te) {0 iF0=0.

if 40,
£0—0,

SSE, Tongji University

& I’&:L[PHH[P[}) = I{L(P(J“IPH) = {;_:_x




7 Wasserstein GAN (WGAN)—Pre-requisite

e \Wasserstein distance

Based on Kantorovich-Rubinstein duality,

W(P,,P,) = sup (E,p [f ()] -E, [F(0)])

[, <t
where the supremum is over all the 1-Lipschitz functions f : y > R.

Therefore, if we have a parameterized family of functions { fW}WEW that are all K-Lipschitz
for some K, the following expression,

max (E, 5 [£, 001~ E,_pi [ (8, ))

would yield a calculation of W (P., P,) up to a multiplicative constant K

SSE, Tongji University



/ Wasserstein GAN (WGAN)!1]

e \Wasserstein GAN

e When training the discriminator f(in WGAN, it is called as critic), we want to
maximize (W is the parameter need to be trained)

L=E, o [1,(0]-E,_;,[1.(9,(2)]

That is, we want to accurately estimate the Wasserstein distance of the current two
distributions and then at the next round, the generator will try to minimize it

e To make sure f, is K-Lipschitz, a clipping technique is used, i.g., all the weights
of T, is constrained to [-C, C]

e When training the generator, we can minimize,

L= Ex~PIr [ fw(x)] - Ez~p(z)[ fw(ge(z)]
Or equivalently by minimizing, L =-E, [ f,(9,(2)]
where w is fixed and @ is the generator’s parameters that need to be updated

[1] M. Arjovsky et al., Wasserstein GANs, arXiv, 2017
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Wasserstein GAN (WGAN)

e \Wasserstein GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used

the deftault values o = 0.00005, ¢ = 0.01. m = 64. ncpitic = O.

Require: : a. the learning rate. ¢, the clipping parameter. m. the batch size.
neritic- the number of iterations of the critic per generator iteration.

Require: : wq. initial critic parameters. g, initial generator’'s parameters.

1: while # has not converged do

2 f‘()l1I ‘{- — (). sesn lfcritic dO

3: Sample {.r("")}ﬁ;_il ~ P, a batch from the real data.

4 Sample {:(f)}iil ~ p(z) a batch of prior samples.
1 : . ; 1 - T

5t 9w < Vw [ﬁ Z;n:l f*w(-"(i)) — m :?;1 fur(ﬂ@(:{?)) )}

6: w — w + a - RMSProp(w, g.,)

T w < clip(w, —c, ¢)

8: end for

9: Sample {z()}™ ~ p(z) a batch of prior samples.

1“. ( <_ _V L m 3 ( ,_(f.)
- 9ge = Z-i:l Jw(ge(z'"))

11: 0 < 6 — - RMSProp(6, ge)
12: end while
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7 Wasserstein GAN (WGAN)

e WGAN has a very excellent property: A meaningful loss metric

e When training WGAN, we can get the current Wasserstein distance between
the two distributions P and P,

e Intuitively, a lower W-distance indicates that P, is closerto P., i.e., the current
generator is better

On next page, you can see the relationship between the W-distance and the quality
of the generator

SSE, Tongji University



i £d
A0 > 12
w 5
i
&y
& 5
LTy

Wasserstein GAN (WGAN)
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&9 WGAN with Gradient Penalty (WGAN-GP)!1!
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e |n original WGAN, to make sure the critic function is K-Lipschitz, it uses a
weight-clipping technique
e Weight-clipping will lead to vanishing or exploding gradients

e Thus, a new technique is proposed to make the critic function K-Lipschitz,
which is called ‘gradient penalty’

The new critical loss becomes

L=E,, [D)]-E, , [D0]+1E,, {(HVXD&) 2 —1)2

| ] |\ J
| |

original critic gradient penalty

[1] I. Gulrajani et al., Improved training of Wasserstein GANs, arXiv, 2017
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WGAN with Gradient Penalty (WGAN-GP)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngitic =
0.0001, 3; = 0, 3y = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritic» the batch size m, Adam hyperparameters «v, 31, 2.
Require: initial critic parameters wyg, initial generator parameters 6.
I: while ¢ has not converged do

o
l'_\:
Q
1

2: fort =1,.... ngic do

3: for:=1.....mdo

4: Sample real data & ~ PP,., latent variable = ~ p(z). a random number € ~ U0, 1].
S: €T C‘;H(z)

6: T ex+ (1l —e)x

7: LW <« Dy() — Dy(x) + A(||Va Doy (2)||2 — 1)3

8: end for

0: w < Adam(V,, = 3" LW w, o, By, Ba)

10: end for |

[1: Sample a batch of latent mliables {zW}m, ~ p(2).

12: 0 < Adam(Vy- S —D,(Go(2)). 0, . B1, 32)
13: end while
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e Conditional GANs (cGANSs)
e Application Part
e Existing Implementations Using Tensorflow
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* |n an unconditioned generative model, there is no control on modes of the
data being generated

e By conditioning the model on additional information it is possible to direct
the data generation process

e Such conditioning could be based on class labels, or even data from
different modality (such as images)

e cGAN is a very general idea; that means the conditions can be of various
form and the ways to add conditions can also vary

[1] M. Mirza et al., Conditional generative adversarial nets, arXiv, 2014
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&9)) conditional Generative Adversarial Nets (CGANSs)
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e The unconditioned GAN,
min max V(D,G)=E,_,_[logD®]+E, , , [logl-D(G(2)))]]

e GAN can be extended to a conditional model if both the generator and
discriminator are conditioned on some extra information y,

minmax {V(D,6)=E,_,_ ., [log D(x|y)]+E,_, ,, [log(1 - D(G(z| y)))]|

SSE, Tongji University
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@@ Conditional Generative Adversarial Nets (cGANSs)

e The architecture of a simple conditional adversarial net
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e Application Part
e Paired image-to-image translation (pix2pix)
e Unpaired image-to-image translation (cycleGAN)
* Image superresolution (SRGAN)

e S+U learning (SimGAN)
e Existing Implementations Using Tensorflow
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@@ Paired Image-to-image translation (pix2pix) [

e Many problems in image processing, computer graphics, and CV can be
posed as translating an input image into a corresponding output image

Labels to Street Scene

iInput output

[1] P. Isola, J. Zhu, T. Zhou, and A.A. Efros, Image-to-image translation with conditional adversarial networks,
CVPR, 2017
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@@ Paired Image-to-image translation (pix2pix)

e Many problems in image processing, computer graphics, and CV can be
posed as translating an input image into a corresponding output image

BW to Color

INnput output
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Paired Image-to-image translation (pix2pix)

e Many problems in image processing, computer graphics, and CV can be
posed as translating an input image into a corresponding output image

Edges to Photo

output
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&9 Paired Image-to-image translation (pix2pix)
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e Many problems in image processing, computer graphics, and CV can be
posed as translating an input image into a corresponding output image

e This work proposed a unified solution for these kinds of problems based on
cGANs, which takes the input image as the condition

SSE, Tongji University



Paired Image-to-image translation (pix2pix)

Suppose that X is the input image, Y is the corresponding output image
The generator G is trained to produce outputs that cannot be distinguished from real images
by an adversarially trained discriminator D

— fake

4|:M:H:|—> real
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/ Paired Image-to-image translation (pix2pix)

Suppose that X is the input image, Y is the corresponding output image
The generator G is trained to produce outputs that cannot be distinguished from real images
by an adversarially trained discriminator D
When updating the discriminator,
0, =argmax E,, [log D, (X, ) |+ E, e [mg(l— D, (%G, (x)))]

When updating the generator,

0; = argminE, ., [10g(1-D,, (x.G,, X)) |+ 4E,, [y -6, 0 ]

SSE, Tongji University
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@@ Paired Image-to-image translation (pix2pix)

e Implementation details
e |[nput to the generator is an image

e The generator uses a U-shaped encoder-decoder network, in which the corresponding
decoder features will be concatenated with the feature maps from the encoder

SSE, Tongji University
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Paired Image-to-image translation (pix2pix)
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@@ Paired Image-to-image translation (pix2pix)

e Implementation details
e |[nput to the generator is an image

e The generator uses a U-shaped encoder-decoder network, in which the corresponding
decoder features will be concatenated with the feature maps from the encoder

e The output of the last layer of the discriminator is a matrix instead of a scalar; such a
matrix can indicate the ‘fakeness’ or ‘realness’ at the patch level

SSE, Tongji University



@@ Paired Image-to-image translation (pix2pix)

512*512 512*512 -

256256
128*128

6

Or
.’ 64*64 30730
32%¥32  31*31
-f—l—i—. L
6 64 256

128 512 512 1
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Paired Image-to-image translation (pix2pix)

Have Fun! You can try the online Image-to-Image demo implemented by Christopher

Hesse https://affinelayer.com/pixsrv/
edges2cats edges2handbags
INPUT OUTPUT TOOL INPUT OQUTPUT

£

| =

pIX2pix

process

A -y =
m clear random

save

=

pIX2pix

process

%
m clear random

save
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e Unpaired image-to-image translation (CycleGAN)
* Image superresolution (SRGAN)
e S+U learning (SimGAN)

e Existing Implementations Using Tensorflow
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Unpaired image-to-image translation (CycleGAN) 1]

e Proble

TR g

m definition

What was the real scene
when Monet draw this
picture?

This is one Monet’s artwork

[1] J. Zhu et al., Unpaired image-to-image translation using cycle-consistent adversarial networks, arXiv, 2017
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Unpaired image-to-image translation (CycleGAN)!!

e Problem definition

- E T T v -

b T
IR Ry

S 3 'y =
SHETNE mwy

vy -
g-\

JeE
A\ A
¥

This is one Monet’s artwork This is a computer generated image

[1] J. Zhu et al., Unpaired image-to-image translation using cycle-consistent adversarial networks, arXiv, 2017
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@@ Unpaired image-to-image translation (CycleGAN)

e Problem definition
e |tis also an image-to-image translation problem
e However, for training, we do not have corresponding input pairs

Source domain X, target domain Y, no paired examples
Goal: learning a mapping G: X — Y , such that the distribution of images from G(X) is
indistinguishable from the distribution of Y using an adversarial loss

SSE, Tongji University



Unpaired image-to-image translation (CycleGAN)

e Key idea: Cycle consistent

e E.g., if we translate a sentence from Chinese to English, and then translate it
back from English to Chinese, we should arrive back at the original sentence

e Mathematically, if we have a translator G: X — Y and another translator F:Y — X
then G and F should be inverses of each other

e Cycle consistency loss encourages F(G(x)) = x,G(F(y)) =y

SSE, Tongji University
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Unpaired image-to-image translation (CycleGAN)

e Key idea: Cycle consistent

| c ¥ Fae
o I - | 17~ a2[ .
D X Dy 2k Vo Al @ | Y ~___7| X Yy
1 & ? F | F

loss . O«

X Y X Y @ |X Y .
: ./”_ ; cycle-consistency
\—// cycle-consistency || _..K > Q \S ol | loss

8

(a) | (b) | (0

-

Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cyvcle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: © — G(z) — F(G(x)) = z. and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y

SSE, Tongji University
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@@ Unpaired image-to-image translation (CycleGAN)

e Key idea: Cycle consistent

The objective is, G*,F" = arg min max L(G, F, D,,D,)

G.,F Dy.,D,

where,
L(G,F,Dy,,D,) =L (G,D,, X,Y)+ L (F, Dy, Y, X)+ AL

cyc

(G,F)
Lo (G, Dy, X Y)=E, () [log Dy (N]+E,_;,. i [log(1= Dy (G(x)))]
Loan (Fs DY X) =B 0 [log Dy (X)]+ By s ) log(1- Dy (F(y)))]

Lo G, F)=E, , o [[FGON =X, |+ E, 5. IGEF YN -Y], |
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Unpaired image-to-image translation (CycleGAN)—Examples

image Van Gogh style

SSE, Tongji University
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@@ Unpaired image-to-image translation (CycleGAN)—Examples
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* Image superresolution (SRGAN)
e S+U learning (SimGAN)
e Existing Implementations Using Tensorflow
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Image Super-resolution (SRGAN)

e Problem definition

e The task of super-resolution is to estimate a high-resolution (HR) image from
its low-resolution counterpart

e |tis a highly ill-posed problem
e [n some occasions, it is also referred to as image interpolation

e ‘Nearest neighbor’, ‘bilinear’, and ‘bicubic’ are the three most common
interpolation methods provided in Image Processing packages, such as OpenCV
and Matlab

e Modern techniques to solve this problem is based on machine learning
technologies; the essence is to learn a function, mapping from the low-
resolution image space to the high-resolution image space

SSE, Tongji University



Image Super-resolution (SRGAN)!!]

e Key ideas of SRGAN

e |t uses a GAN architecture to make sure the SR images are in the manifold of
natural HR images

e The loss used for updating the generator consists of two parts: the adversarial
loss and the content loss

[1] C. Ledig et al., Photo-realistic single image super-resolution using a generative adversarial network, CVPR,
2017
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&2 Image Super-resolution (SRGAN)

When updating the discriminator,

6, = argmax EI“R~ptram(l“R) [log D, (I HR)] + EILRNPG(lLR) [log(l -D,, (Gee (I - )))J

o

When updating the generator,
o : . LR
0, = arg min EILR~pG(ILR) [log(l DHD (GHG (I )))}

% :
)

HR LR
+2/2EILR~pG(|LR)|:‘¢|aJ‘(I )x,y_ i,j (GQG(I ))
where g/ﬁlj indicates the feature map obtained by the j-th convolution before the i-th
max-pooling layer with the VGG19 network

SSE, Tongji University
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Image Super-resolution (SRGAN)

Generator Network B residual blocks

|
kOn64s1 k3n6ds1 k3n64s1 ' k3n64s1  k3n256s1 k9n3s1

— — —
-

1

™~
>
| -
[0}
4
[ =
3
A
4.
Q
a
a.

skip connection
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Image Super-resolution (SRGAN)

Discriminator Network k3012852 k3n25652 k3n512s2
k3n64s1 k3n64s2 k3n128s1 k3n256s1 k3n512s1

SSE, Tongji University
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Image Super-resolution (SRGAN)--Sample Results

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832)

. &
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e S+U learning (SimGAN)
e Existing Implementations Using Tensorflow
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&9)) s+ Learning (SImGAN)

e Apple’s first public Al paper
e Problem formulation

e Recently, it has become tractable to train models on synthetic images, to avoid
the need for expensive annotations

e However, learning from synthetic images may not achieve the desired
performance due to a gap between synthetic and real image distributions

e To reduce this gap, the authors proposed Simulated + Unlabeled (S+U)
learning, where the task is to improve the realism of a simulator’s output using
unlabeled real data while preserving the annotation information from the
simulator

[1] A. Shrivastava et al., Learning from simulated and unsupervised images through adversarial training, CVPR,
2017
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@*@ S+U Learning (SImGAN)

Unlabeled real

Overview of SImGAN
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g S+U Learning (SimGAN)

T =<
A0 > N\
Qasd-

e The goal of SIMGAN is to use a set of unlabeled real images y. €Y to
learn a refiner R,(X) that refines a synthetic image X

e The refined image is denoted by x :=R,(x) . The key requirement for
S+U learning is that the refined image x™ should look like a real image
in appearance while preserving the annotation information from the
simulator

e The key idea is that the loss for the generator contains two parts, the
adversarial loss and a self regularization term that penalizes large
changes between the synthetic and refined images

SSE, Tongji University



@@ S+U Learning (SimGAN)

When updating the discriminator,
¢ =argmaxE,  [logD, () |+ E,.,, | log(1-D, (R, (x)))]

When updating the generator,

b _ argmin€, [log(l -D, (R, (x)))] +AE, o ol IX=R,), |

SSE, Tongji University
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@@ S+U Learning (SimGAN)

e Other implementation details

e They limit the discriminator’s receptive field to local regions instead of the whole
image, resulting in multiple local adversarial loss per image (the same as the
patchGAN idea in pix2pix)

Discriminator

Input image Probability map
Figure 3. Illustration of local adversarial loss. The discrimina-

tor network outputs a w X h probability map. The adversarial

loss function is the sum of the cross-entropy losses over the
local patches.

SSE, Tongji University



S+U Learning (SimGAN)

e Other implementation details

e They limit the discriminator’s receptive field to local regions instead of the whole
image, resulting in multiple local adversarial loss per image

e They introduce a method for improving the stability of training by updating the
discriminator using a history of refined images rather than only the ones from the
current refiner network

Refined images
with current R

1 \q Mini-batch for Dﬁ
Buffer of

refined images L Refined ReaIJ
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S+U Learning (SimGAN)—Examples

Synthetic

Simulated images

Refined

‘—-—.

Unlabeled Real Images

ﬁ- i-
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e Existing Implementations Using Tensorflow
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g Existing Implementations Using Tensorflow

D

s
A0 >
OIS

* DCGAN

e https://github.com/carpedm20/DCGAN-tensorflow
e Pix2Pix

e The best implementation is https://github.com/affinelayer/pix2pix-tensorflow
e CycleGAN

e | haven’t found a perfect Tensorflow Implementation; you may try the original
Pytorch implementation

e SRGAN
e https://github.com/zsdonghao/SRGAN

e SSIMGAN
e https://github.com/carpedm?20/simulated-unsupervised-tensorflow
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Thanks!
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