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e Vision-based Parking-slot Detection
e Human-body Keypoint Detection
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e Vision-based Parking-slot Detection

e Background Introduction

e General Flowchart

e Surround-view Synthesis

e Parking-slot Detection from Surround-view
e Experiments

e Semantic Segmentation

e Human-body Keypoint Detection
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Background Introduction—ADAS Architecture
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@@ Background Introduction

e Embarrassment in parking is one of the most difficult problems for
drivers

e |t is a challenge for a novice driver to park a car in a limited space

!

Automatic parking system is a hot research area in ADAS field
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&9 Background Introduction—ADAS Architecture
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n* How to detect a parking-slot and return its position
/DA- with respect to the vehicle coordinate system?
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Different Ways to Locate a Parking-slot

e |nfrastructure-based solutions
e Need support from the parking site
e Usually, the vehicle needs to communicate with the infrastructure

Intelligent parking lots
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@@ Different Ways to Locate a Parking-slot

e |Infrastructure-based solutions
e On-vehicle-sensor based solutions

e Parking-vacancy detection g
e Ultrasonic radar
e Stereo-vision
e Depth camera
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S Different Ways to Locate a Parking-slot

e |Infrastructure-based solutions
e On-vehicle-sensor based solutions

e Parking-vacancy detection

Parkmg-slot (deflned b Imes \vision- based) detec - our focus
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Research Gaps and Our Contributions

e Research Gaps
e There is no publicly available dataset in this area

e All the existing methods are based on low-level vision primitives (edges,
corners, lines); large room for performance improvement

e QOur contributions
v’ Construct a large-scale labeled surround-view image dataset
v" Introduce machine learning theory into this field
v Develop a real system that has been deployed on SAIC Roewe E50
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e Vision-based Parking-slot Detection

e General Flowchart

e Surround-view Synthesis

e Parking-slot Detection from Surround-view
e Experiments

e Human-body Keypoint Detection
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Overall flowchart of the vision-based parking slot detection system
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e Vision-based Parking-slot Detection

e Surround-view Synthesis
e Parking-slot Detection from Surround-view
e Experiments

e Human-body Keypoint Detection
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@@ Surround-view Synthesis

e Surround view camera system is an important ADAS technology allowing
the driver to see a top-down view of the 360 degree surroundings of the
vehicle

e Such a system normally consists of 4~6 wide-angle (fish-eye lens)
cameras mounted around the vehicle, each facing a different direction

—
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7 Surround-view Synthesis

e The surround-view is composed of the four bird’s-eye views (front, left,
back, and right)
e To get the bird’s-eye view, the essence is generating a look-up table
mapping a point on bird’s-eye view to a point on the fish-eye image
e Decide the similarity transformation matrix P;_,, , mapping a point from the
bird’s-eye view coordinate system to the world coordinate system

* Decide the projective transformation matrix P, _,, , mapping a point from
the world coordinate system to the undistorted image coordinate system

 Decide the look-up tableT,_ ., mapping a point from the undistorted image
coordinate system to the fish-eye image coordinate system
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Surround-view Synthesis

e Process to get the bird’s-eye view

Bird’s-eye-view World CS Undistorted Fisheye
image CS ) w) | image CS m—) image
| | | |
I Asimilarity matrix 1 A homography matrix | a mapping look-up table 1
. IDB—)W ! I:)W—>U I TU —>F .
a look-up table T, .
:XF
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Surround-view Synthesis

e Process to get the bird’s-eye view

e Distortion coefficients of a fish-eye camera and also the mapping look-up
table T,_ - can be determined by the calibration routines provided in
openCV3.0

fisheye image undistorted image
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7 Surround-view Synthesis

e Process to get the bird’s-eye view
e Determine B, _,

The physical plane (in WCS) and the undistorted image plane
can be linked via a homography matrix B, _,

Xy = Ry_uXw

N

i=1"’

If we know a set of correspondence pairs {x,,X,, }

Py_u can be estimated using the least-square method
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Surround-view Synthesis

e Process to get the bird’s-eye view
e Determine B, _,
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(e)
Image is of the size 600x 600

< 10mx10m physical region

(d)
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How to detect the parking-slot given a surround-view image?
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e Vision-based Parking-slot Detection

e Parking-slot Detection from Surround-view
e Experiments

e Human-body Keypoint Detection
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@@ Challenges

e |tis not an easy task due to the existence of
v’ Various types of road textures
v’ Various types of parking-slots
v’ lllumination variation
v’ Partially damaged parking-lines
v Non-uniform shadow

Making the low-level vision based algorithms difficult to succeed
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/ DeepPS: A DCNN-based Approach

e Motivation

v Detect marking-points

v Decide the validity of entrance-lines
and their types (can be solved as a
classification problem)
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Both of them can be solved by
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DCNN-based techniques
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@@ DeepPS: A DCNN-based Approach

e Marking-point detection by using a DCNN-based framework

e \We adopt YoloV2 as the detection framework

e R-CNN (Region-baed convolutional neural networks) (CVPR 2014)
e SPPNet (Spatial Pyramid Pooling Network) (T-PAMI 2015)

e Fast-RCNN (ICCV 2015)

e Faster-RCNN (NIPS 2015)

* Yolo (You Only Look Once) (CVPR 2016)

e SS

Accurate enough, fastest!
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@@ DeepPS: A DCNN-based Approach

e Marking-point detection by using a DCNN-based framework
e \We adopt YoloV2 as the detection framework

e Manually mark the positions of marking-points and define regions with fixed
size centered at marking-points as “marking-point patterns”
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@@ DeepPS: A DCNN-based Approach

e Marking-point detection by using a DCNN-based framework
e \We adopt YoloV2 as the detection framework

e Manually mark the positions of marking-points and define regions with fixed
size centered at marking-points as “marking-point patterns”

e To make the detector rotation-invariant, we rotate the training images (and
the associated labeling information) to augment the training dataset
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DeepPS: A DCNN-based Approach

e Given two marking points A and B, classify the local pattern formed by A
and B for two purposes

e Judge whether “AB” is a valid entrance-line

e |f it is, decide the type of this entrance-line

Local pattern formed by A and B
(48*192)

size normalized
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S DeepPS: A DCNN-based Approach

e Given two marking points A and B, classify the local pattern formed by A
and B for two purposes

e Judge whether “AB” is a valid entrance-line
e |[fitis, decide the type of this entrance-line

We define 7 types of local patterns formed by two marking-points
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Typical samples of 7 types of local patterns
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DeepPS: A DCNN-based Approach

output: 40
e Samples for slant parking-slots were quite rare, we use SMOTE!! strategy to

image patch

e To solve the local pattern classification problem, we design a DCNN

model which is a simplified version of AlexNet

+ dropout

conv1 @

+
RelLU

kernel: [3 9]
stride: [1 3]

create more virtual samples
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321-357, 2002

output: 1024

kernel: [3 3]

pad: [1 1]
output: 248

kernel: [3 3]

pad: [1 1]
output: 160

kernel: [3 5]
pad: [2 0]
output: 112

[1] N.V. Chawla et al., SMOTE: Synthetic Minority Over-sampling Technique, J. Artificial Intelligence Research 16:



@@ DeepPS: A DCNN-based Approach

e For a slant parking-slot, how to obtain the angle between its entrance-

line and its separating lines?
| Prepare a set of templates {ng } having different angles

Extract the two patches |, and Ig around A and B after
the direction is normalized

se BN

— % *
o =argmax {1, *T, +1,*T, |

0;
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e Vision-based Parking-slot Detection

e Experiments

e Human-body Keypoint Detection
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e We collected and labeled a large-scale dataset
e |t covers vertical ones, parallel ones, and slant ones
e Typical illumination conditions were considered
e Various road textures were included
e 9827 training images
e 2338 test images

e Test set is separated into several subsets

indoor parking lot 226
outdoor normal daylight 546
outdoor rainy 244
outdoor shadow 1127
outdoor street light 147
outdoor slanted 48
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Marking-point detection accuracy

e Missing rates VS FPPI curves on the entire test set
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@@ Marking-point localization accuracy

e Statistics of the distances of the detected marking-points with the
matched labeled ones

ACF + Boosting 2.86+1.54 4.77+2.57
YoloV2-based 1.55+1.05 2.58%1.75
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Parking-slot detection accuracy

Wang et al.’s method
Hamada et al.’s method

Suhr&Jung’s method

PSD L
DeepPS

98.38%
98.27%
98.29%
98.38%
98.55%
99.67%

e Precision-Recall rates of different parking-slot detection methods

Jung et al.’s method

52.39%
56.16%
60.41%
70.96%
84.64%
98.76%
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Parking-slot detection accuracy

e Precision-Recall rates of two best performing methods on subsets

indoor-parking lot (99.34%, 87.46%) (100%, 97.67%)
outdoor-normal daylight (99.44%, 91.65%) (99.61%, 99.23%)
outdoor-rainy (98.68%, 87.72%) (100%, 99.42%)
outdoor-shadow (97.52%, 73.67%) (99.86%, 99.14%)
outdoor-street light (98.92%, 92.00%) (100%, 100%)
outdoor-slanted (93.15%, 83.95%) (96.15%, 92.59%)
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@@ About the computational cost

e Workstation configuration
e GPU: Nvidia Pascal Titan X
e CPU: 2.4GHZ Intel Xeon E5-2630V3
e RAM: 32GB

e |t can process one frame within 25ms
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222 Demo Video for PS Detection
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3 | mistake.ini

| D:AbinLCM\Control.exe

dex: B state: B gear:?
dex: @ state: B gear:4 res

B birdview

4 realst B st

%) boost_regex-wvcl10-mt-1_49.dll
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e Human-body Keypoint Detection
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e Human-body Keypoint Detection
e Problem definition
e OpenPose
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@@ Problem Definition

e Human-body Keypoints

o L g

e Potential applications
e Behavior analysis
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OpenPoselll

e OpenPose

e A CNN-based library for human-body keypoint detection
e With Nividia Titan XP GPU, its frame rate is about 15 fps
e Support both Windows and Ubuntu

| . Face detection (rontal upfiowiNprofile)
bl O zp Jr .

[1] Z. Cao et al., Realtime multi-person 2D pose estimation using part affinity fields, CVPR, 2017
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@@ Demo Video

Thanks!

N\
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