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7 What is machine learning?

e Gives "computers the ability to learn without being explicitly
programmed” (Arthur Samuel in 1959)

Arthur Lee Samuel
(December 5, 1901 — July 29, 1990)

e |t explores the study and construction of algorithms that can learn
from and make predictions on data

e |tis employed in a range of computing tasks where designing and
programming explicit algorithms with good performance is difficult
or unfeasible

[1] Samuel, Arthur L., Some Studies in Machine Learning Using the Game of
Checkers, IBM Journal of Research and Development, 1959
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&/ Supervised VS Unsupervised

e Supervised learning
— It will infer a function from labeled training data
— The training data consists of a set of training examples

— Each example is a pair consisting of an input object
(typically a vector) and a desired output value (also called
the supervisory signal)

e Unsupervised learning
— Trying to find hidden structure in unlabeled data

— Since the examples given to the learner are unlabeled,
there is no error or reward signal to evaluate a potential
solution

— Such as PCA, K-means (a clustering algorithm)
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About sample

e Attribute (feature), attribute value, label, and
example

one example
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7 Training, testing, and validation

e Training sample and training set
A training set comprising m training samples,

D= {(Xl, y1)9(X29 y2)9°'°9(xm9 ym)}

where X; = (X, Xiy,..., X,y ) € ¥ is the feature vector of ith
sample and Y, € § is its label

By training, our aim is to find a mapping,

f:y—>C
based on D

If & comprises discrete values, such a prediction task is called
“classification”; if it comprises real numbers, such a prediction
task is called “regression”
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7 Training, testing, and validation

e Training sample and training set
e Test set

— A test set is a set of data that is independent of the training
data, but that follows the same probability distribution as
the training data

— Used only to assess the performance of a fully specified
classifier
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& Training, testing, and validation

e Training sample and training set
e Test set
 Validation set

— In order to avoid overfitting, when any classification
parameter needs to be adjusted, it is necessary to have a
validation set; it is used for model selection

— The training set is used to train the candidate algorithms,
while the validation set is used to compare their
performances and decide which one to take
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&/ Overfitting, Generalization, and Capacity

e Overfitting

— It occurs when a statistical model describes random error
or noise instead of the underlying relationship

— It generally occurs when a model is excessively complex,
such as having too many parameters relative to the number
of observations

— A model that has been overfit will generally have poor

predictive performance, as it can exaggerate minor
fluctuations in the data
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) Overfitting, Generalization, and Capacity

e Overfitting

e Generalization

— Refers to the performance of the learned model on new,
previously unseen examples, such as the test set
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&)/ Overfitting, Generalization, and Capacity

e Overfitting
e Generalization

Example: Linear regression (housing prices)
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7 Overfitting, Generalization, and Capacity

e Overfitting

e Generalization

Example: Logistic regression

Xy
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&/ Overfitting, Generalization, and Capacity

e Overfitting
e Generalization
e Capacity

— Measures the complexity, expressive power, richness, or
flexibility of a classification algorithm

— Ex, DCNN (deep convolutional neural networks) is powerful
since its capacity is very large

10
Y =b+wx, y =b+oXx +o,%, Y =b+) ox
s higher capacity =1
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) Performance Evaluation

Given a sample set (training, validation, or test)
D = {(Xp y1)a(xza yz):"-a(xm: ym)}

To assess the performance of the learner f, we need to compare
the prediction f (X) and its ground-truth label y

For regression task, the most common performance measure is
MSE (mean squared error),

E(f;D):
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2%/ Performance Evaluation (for classification)

e Error rate

— The ratio of the number of misclassified samples to the
total number of samples

E(f;D)=%il(f(xi)¢yi)

e Accuracy

— It is derived from the error rate

acc( f; )=%Zm:1 (f(x)=y;)=1-E(f;D)
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) Performance Evaluation (for classification)

e Precision and Recall

m

positive negative
positive True Positive (TP) False Negative (FN)
negative False Positive (FP) True Negative (TN)
.. TP
precision =
P+FP
TP
recall =
P +FN
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) Performance Evaluation (for classification)

e Precision and Recall

— Often, there is an inverse relationship between precision and

recall, where it is possible to increase one at the cost of reducing
the other

— Usually, PR-curve is not monotonic

pracision-recall graph
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&/ Performance Evaluation (for classification)

e Precision-recall should be used together; it is meaningless
to use only one of them

e However, in many cases, people want to know explicitly
which algorithm is better; we can use F-measure

F _(1+,82)><P><R
7 (B*xP)+R
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2%/ Performance Evaluation (for classification)

e To derive a single performance measure

Varying threshold, we can have a series (P, R) pairs,
(P,R),(P,R,),....(P,,R )

Then, [ [
I:)macro — H Z Pl Rmacro — _Z Ri
=1 I

= B (1 T IB2 ) X I:)macro X Rmacro
p—macro (,Bsz )+R

macro macro
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&/ Class-imbalance Issue

e Problem definition

— It is the problem in machine learning where the total
number of a class of data is far less than the total number
of another class of data

— This problem is extremely common in practice
e Why is it a problem?

— Most machine learning algorithms work best when the
number of instances of each classes are roughly equal

— When the number of instances of one class far exceeds the
other, problems arise
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27 Class-imbalance Issue

e How to deal with this issue?
— Modify the cost function

— Under-sampling, throwing out samples from majority
classes

— Oversampling, creating new virtual samples for minority
classes

» Just duplicating the minority classes could lead the classifier to
overfitting to a few examples

» Instead, use some algorithm for oversampling, such as SMOTE
(synthetic minority over-sampling technige)!!]

[1] N.V. Chawla et al., SMOTE: Synthetic Minority Over-sampling Technique, J.
Artificial Intelligence Research 16: 321-357, 2002
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27 Class-imbalance Issue

e Minority oversampling by SMOTE!

Add new minority class instances by:

* For each minority class instance ¢
— neighbours = Get KNN(5)
— n = Random pick one from neighbours

— Create a new minority class r instance using c’s feature vector
and the feature vector’s difference of n and ¢ multiplied by a
random number

» i.e. r.feats = c.feats + (n.feats - c.feats) * rand(0,1)

[1] N.V. Chawla et al., SMOTE: Synthetic Minority Over-sampling Technique, J.
Artificial Intelligence Research 16: 321-357, 2002
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&/ Linear regression

e Qur goal in linear regression is to predict a target
. . d
continuous value y from a vector of input values X € R
: we use a linear function h as the model

e At the training stage, we aim to find h(X) so that we
have h(Xx.) =Y. for each training sample (X.,Y.)

e We suppose that his a linear function, so
Ngp (X)=6"x+Db,0 € R

Rewrite it, 0’ _ (0), X' _ [Xj
b 1

6'x+b=6"x =h_(x)
Later, we simply use h,(X)= 8" X,8 e R(d“)Xl, x e R+
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Y/ Linear regression

e Then, our task is to find a choice of @ so that hy(X.) is
as close as possible to Y,

The cost function can be written as,

1O =2 (0% -y,)

Then, the task at the training stage is to find
* . 1 m T 2
0 =argm1n—2(0 X: — yi)
0 23
For this special case, it has a closed-form optimal solution

Here we use a more general method, gradient descent
method

Lin ZHANG, SSE, 2017




2 Linear regression

e Gradient descent
— It is a first-order optimization algorithm

— To find a local minimum of a function, one takes steps
proportional to the negative of the gradient of the function
at the current point

— One starts with a guess @, for a local minimum of J(6)
and considers the sequence such that

0n+1 = en o ave‘] (0)|0:0n

where ¢ is called as learning rate

Lin ZHANG, SSE, 2017



2’ Linear regression

e Gradient descent
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&/ Linear regression

e Gradient descent
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&/ Linear regression

e Gradient descent

Repeat until convergence ( J (@) will not reduce anymore)

{
0n+1 = gn o O‘VQ‘J (0)|49=0n

GD is a general optimization solution; for a specific problem,

the key step is how to compute gradient
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Y/ Linear regression

e Gradient of the cost function of linear regression

Zm:(HT Xi =Y, )2

0=

The gradient is,

V,J(6) =

0J(0) |
06,

03 (6)
06,

0J(0)

| aHdH _
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&/ Linear regression

e Some variants of gradient descent

— The ordinary gradient descent algorithm looks at every
sample in the entire training set on every step; it is also
called as batch gradient descent

— Stochastic gradient descent (SGD) repeatedly run through
the training set, and each time when we encounter a
training sample, we update the parameters according to the

gradient of the error w.r.t that single training sample only
Repeat until convergence

{

for1=1tom (M is the number of training samples)

! 9n+1 = en_a(er-lrxi_yi)xi

}
}
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&/ Linear regression

e Some variants of gradient descent

— The ordinary gradient descent algorithm looks at every
sample in the entire training set on every step; it is also
called as batch gradient descent

— Stochastic gradient descent (SGD) repeatedly run through
the training set, and each time when we encounter a
training sample, we update the parameters according to the
gradient of the error w.r.t that single training sample only

— Minibatch SGD: it works identically to SGD, except that it
uses more than one training samples to make each estimate
of the gradient
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2’ Linear regression

e More concepts
— m Training samples can be divided into N minibatches

— When the training sweeps all the batches, we say we
complete one epoch of training process; for a typical training
process, several epochs are usually required

epochs = 10;
numMiniBatches = N;
while epochlindex< epochs && not convergent
{
for minibatchindex = 1 to numMiniBatches
{
update the model parameters based on this minibatch
}
}

Lin ZHANG, SSE, 2017
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¥/ Logistic regression

e Logistic regression is used for binary classification

e |t squeezes the linear regression @' x into the range (0,
1) ; thus the prediction result can be interpreted as
probability

e At the testing stage

The probability that the testing sample X is positive is
represented as h,(x) =

1+ exp(—8' X)
The probability that the testing sample X is negative is
represented as 1-h,(x)

Function o(2)=
function 1+ exp(-2)

is called as sigmoid or logistic

Lin ZHANG, SSE, 2017



&/ Logistic regression

1-

One property of the
sigmoid function

o (2)=o(z)(1-0(2))

' o
4 6
The shape of sigmoid function Can_ et
verify?

Lin ZHANG, SSE, 2017




¥/ Logistic regression

e The hypothesis model can be written neatly as

P(y|x;8)=(h,(x)) (1-h,(x))"”’

e Our goal is to search for a value g so that h,(X) is
large when X belongs to “1” class and small when X
belongs to “0” class

Thus, given a training set with binary labels {(Xi Vi) 1=1,..., m}

, we want to maximize,
m

[1(hx))" (1=hy))”

=1
Equivalent to maximize,

z Yi log(he(xi))+(1_ Yi)log(l_ he(xi))
i1



¥/ Logistic regression

e Thus, the cost function for the logistic regression is (we
want to minimize),

J(0) = _Z Yi IOg(he(Xi)) +(1- Yi)log(l — he(xi))
i=1
To solve it with gradient descent, gradient needs to be computed,

V,d0)= Y % (By(x)-%)

e

Assighment!

Lin ZHANG, SSE, 2017



¥/ Logistic regression

e Exercise

— Use logistic regression to perform digital classification

Lin ZHANG, SSE, 2017
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&/ Softmax regression

e Softmax operation

— It squashes a K-dimensional vector z of arbitrary real values
to a K-dimensional vector G(Z) of real values in the range
(0, 1). The function is given by,

G(Z)j — KeXp(Zj)

ZCXP(ZK)

— Since the components of the vector G(Z) sum to one and
are all strictly between 0 and 1, they represent a categorical
probability distribution

Lin ZHANG, SSE, 2017



&/ Softmax regression

e For multiclass classification, given a test input X, we
want our hypothesis to estimate P(Y =K | X)for each

value k=1,2,... K

Lin ZHANG, SSE, 2017



&/ Softmax regression

e The hypothesis should output a K-dimensional vector
giving us K estimated probabilities. It takes the form,

p(y=1]x¢) eXp((gl)T X)
o= | PO=21%0) | : (1( " ex0((6,) 1

' exp(|é;) X||-

| p(y =K | X;¢)_ J=1 _eXp((HK )T X)_

where ¢=[6,,6,,...,0, | e R

Lin ZHANG, SSE, 2017



&/ Softmax regression

e |n softmax regression, for each training sample we
have,

At the training stage, we want to maximize P ( Y, = K | X, ¢)
for each training sample for the correct label k

Lin ZHANG, SSE, 2017



&/ Softmax regression

e Cost function for softmax regression
m K exp|( (6 )T X,
J(#)=- Y1y, =k}log— @ : )
=1 k=l Zexp((ﬁj) Xi)

J=1

where 1{.} is an indicator function

e Gradient of the cost function

Vo 3@ =-Y[x (1, =ki- p( =K| x39))

c Can you verify?

Lin ZHANG, SSE, 2017




&/ Softmax regression

e Redundancy of softmax regression parameters
Subtract a fixed vector y/ from every Hj , we have

p(yi =k|xi;¢): Kexp((o(k)_l//) Xi)

jZ_;exp((ﬁ(” —w)T Xi)
i exp((@k)T Xi)exp(—wTXi) i exp((@k)T Xi)

JZK;eXp((Hj )T Xi)exp(—wT Xi) JZK;GXP((H,- )T Xi)

Lin ZHANG, SSE, 2017



&/ Softmax regression

e Redundancy of softmax regression parameters

e So, in most cases, instead of optimizing K e (d +1)
parameters, we can set 6, =0 and optimize only
w.r.t the (K —1)e(d +1) remaining parameters

Lin ZHANG, SSE, 2017



&/ Cross entropy

e After the softmax operation, the output vector can be
regarded as a discrete probability density function

e For multiclass classification, the ground-truth label for
a training sample is usually represented in one-hot
form, which can also be regarded as a density function
For example, we have 10 classes, and the ith training sample

belongs to class 7, then y. =[0 00000100 0]

e Thus, at the training stage, we want to minimize

ZdiSt(h(Xi;H), Y:)

How to define dist? Cross entroy is a common choice

Lin ZHANG, SSE, 2017




¥/ Cross entropy

e Information entropy is defined as the average amount
of information produced by a probabilistic stochastic
source of data H(X)=->_ p(x)log p(x)

e Cross entropy can measure the difference between
two distributions

H(p,a)=-2_ p(x)logd(x)
e For multiclass classificz'ation, the last layer usually is a
softmax layer and the loss is the ‘cross entropy’

Lin ZHANG, SSE, 2017
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¥’/ Neural networks

e |t is one way to solve a supervised learning problem
given labeled training examples {X., y.}(I1=1,...,m)
e Neural networks give a way of defining a complex,

non-linear form of hypothesis h,, , (X), where W and b
are the parameters we need to learn from training

samples

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e Asingle neuron

— Xy, X, and X, are the inputs, +1 is the intercept term, h,, , (X)
is the output of this neuron

=

hy ()= (W7 x)_f ZWX +bj

where f () is the activation function

Lin ZHANG, SSE, 2017




¥’/ Neural networks

e Commonly used activation functions

— Sigmoid function

f(z)= :

1+ exp(—2)

f(z) 11 e——

| V4
4 6
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¥’/ Neural networks

e Commonly used activation functions

— Tanh function
el —e*

f(z) = tanh(z) = —

e " +e

—Z

0.8
04
0.2k
-0.2
0.6

0.8 _.”.._j...”..é__..”.i.”.._.:..”...@...”._j”.._”.;.“..._i..”...L..”.._

i -
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¥’/ Neural networks

e Commonly used activation functions
— Rectified linear unit (ReLU)

f(z)= maX(O, Z)

flu) = max(0, u)

Lin ZHANG, SSE, 2017



7 Neural networks

e Commonly used activation functions
— Leaky Rectified linear unit (ReLU)

{z, if z>0
f(2)=

0.01z, otherwise

1E "
10} 7
i
.-"‘.
i /
Hr ,”'3
i /
6 4
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2t
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7d
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7 Neural networks

e Commonly used activation functions
— Softplus (can be regarded as a smooth approximation to
RelLU)

f(z)=In(1+e)

MWonlinearities
1 1 |
— Softplus

4- —  Rectifier

T 1 1 1 T
| 1 2 4
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¥’/ Neural networks

e A neural network is composed by hooking together
many simple neurons

e The output of a neuron can be the input of another

e Example, a three layers neural network,

Layer L, Layer L,

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e Terminologies about the neural network
— The circle labeled +1 are called bias units
— The leftmost layer is called the input layer
— The rightmost layer is the output layer

— The middle layer of nodes is called the hidden layer

» In our example, there are 3 input units, 3 hidden units, and 1 output
unit

— We denote the activation (output value) of unit1in lay | as
a'
|

Lin ZHANG, SSE, 2017



¥’/ Neural networks

(2) _ (1) (1) (1) (1)
a" = f(W11 X, +W.,'X, + W5 X, +b) )

(2) _ (1) (1) (1) (1)
a,” =f (W21 X, +W.,' X, +W,,’X, + Db, )

(2) _ (1) (1) (1) (1)
a,” = f (W31 X, +W, X, + W, X, + b, )

_ 03 _ (2) q(2) (2) q(2) 1 4(2) (2)
hy () =a" = f (W73 +WPal” +Wia® +b®)
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¥’/ Neural networks

e Neural networks can have multiple outputs

e Usually, we can add a softmax layer as the output layer
to perform multiclass classification

—_—
hyp(X)
—_—
+1 Layer L,
H Layer L
Layer L, Layer L,

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e At the testing stage, given a test input X, it is
straightforward to evaluate its output

e At the training stage, given a set of training samples,
we need to train W and b
— The key problem is how to compute the gradient
— Backpropagation algorithm

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e Backpropagation

— A common method of training artificial neural networks and
used in conjunction with an optimization method such as
gradient descent

— Its purpose is to compute the partial derivative of the loss to
each parameter (weights)

— neural nets will be very large: impractical to write down
gradient formula by hand for all parameters

— recursive application of the chain rule along a computational
graph to compute the gradients of all parameters

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e Backpropagation

Lin ZHANG, SSE, 2017



¥’/ Neural networks

e Backpropagation

“local gradient”

Lin ZHANG, SSE, 2017




¥’/ Neural networks

e Backpropagation

£
\ “local gradient”
0z
Or f >
9z - Jaz
/ ay o
gradients
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¥’/ Neural networks

e Backpropagation

£
{C “local gradient”

%/ o 0z
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¥’/ Neural networks

e Backpropagation

&I
% “local gradient”
X 9 0z
N
¥ G z
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gradients
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¥’/ Neural networks

e Backpropagation

/ -
\ “local gradient”
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&/ Convolutional neural network

e Specially designed for data with grid-like structures
(LeCun et al. 98)
— 1D grid: sequential data
— 2D grid: image
— 3D grid: video, 3D image volume
e Beat all the existing computer vision technologies on

object recognition on ImageNet challenge with a large
margin in 2012

Lin ZHANG, SSE, 2017



&/ Convolutional neural network

e Something you need to know about DCNN

— Traditional model for PR: fixed/engineered features +
trainable classifier

— For DCNN: it is usually an end-to-end architecture; learning
data representation and classifier together

— The learned features from big datasets are transferable
— For training a DCNN, usually we use a fine-tuning scheme

— For training a DCNN, to avoid overfitting, data augmentation
can be performed

Lin ZHANG, SSE, 2017



&/ Convolutional neural network

e Problems of fully connected networks
— Every output unit interacts with every input unit

— The number of weights grows largely with the size of the
input image

— Pixels in distance are less correlated

Lin ZHANG, SSE, 2017



w7 Convolutional neural network

e Problems of fully connected networks

Example: 1000x1000 image
1M hidden units
- 10”12 parameters!!!

Ranzato CVPR’13

Lin ZHANG, SSE, 2017




&/ Convolutional neural network

e One simple solution is locally connected neural

networks

— Sparse connectivity: a hidden unit is only connected to a
local patch (weights connected to the patch are called filter
or kernel)

— It is inspired by biological systems, where a cell is sensitive to

a small sub-region of the input space, called a receptive
field; Many cells are tiled to cover the entire visual field

Lin ZHANG, SSE, 2017



w7 Convolutional neural network

e One simple solution is locally connected neural
networks

Example: 1000x1000 image
IM hidden units

Filter size: 10x10
100M parameters

Ranzato CVPR’13

Lin ZHANG, SSE, 2017




&/ Convolutional neural network

e One simple solution is locally connected neural
networks
— The learned filter is a spatially local pattern

— A hidden node at a higher layer has a larger receptive field in
the input

— Stacking many such layers leads to “filters” (not anymore
linear) which become increasingly “global”

Lin ZHANG, SSE, 2017



Convolutional neural network

e The first CNN

— LeNet!!!
e C3: f. maps 16@10x10
: feature maps S4: 1. 16@5x5
INPUT 6@28x28 MO 1@

32x32 52: f. maps

6@14x14

|
‘ Full mnAecﬁnn ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

CNN called LeNet by Yann LeCun (1998)

[1] Y. LeCun et al., Gradient-based Learning Applied to Document Recognition,
Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998

Lin ZHANG, SSE, 2017



/ Convolutional neural network

e Convolution

— Computing the responses at hidden nodes is equivalent to
convoluting the input image x with a learned filter w

nefli, j1=(x*w)li, j1= >, > xlm.nwli—m, j—n]

Kemel
. ) matrix
w[i—m, j— n|
[ Column / Column j
Input
m,n] oot LS AAAAAAAFL image L ZZZ /7777777
image A/ AV f///// [/////[/]//
R T G A
son| S IIIIITILITF voni — [ TPIEIIILLLL oup
o L7 AR W O L LRI T T T77 pixed
Zﬁszj 2
A A g g
7[7f7/ /II]/ 7 / /////F,// ///,/
Array of [ ) .
products : z
Summer
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&/ Convolutional neural network

e Downsampled convolution layer (optional)

— To reduce computational cost, we may want to skip some
positions of the filter and sample only every s pixels in each
direction. A downsampled convolution function is defined as

net(l, ) =(x*w)[1 xS, ] xS]

— s is referred as the stride of this downsampled convolution
— Also called as strided convolution

Lin ZHANG, SSE, 2017



2/ Convolutional neural network

e Multiple filters
— Multiple filters generate multiple feature maps
— Detect the spatial distributions of multiple visual patterns

hidden unit /
filter response

Ranzato CVPR’13
Lin ZHANG, SSE, 2017




w7 Convolutional neural network

e 3D filtering when input has multiple feature maps

output feature map output feature maps

: / 3D kernel|

A s (filter)

Input feature maps / /

Input feature maps /
Ranzato CVPR’13
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&’/ Convolutional neural network

e Convolutional layer

Convolutional
Layer

L

input feature maps output feature maps

Ranzato CVPR’13

Lin ZHANG, SSE, 2017




&/ Convolutional neural network

e To the convolution responses, we then perform
nonlinear activation
— RelLU
— Tanh
— Sigmoid
— Leaky RelLU
— Softplus

Lin ZHANG, SSE, 2017



&’/ Convolutional neural network

e Local contrast normalization (optional)

— Normalization can be done within a neighborhood along
both spatial and feature dimensions
hf,x,y,k - mi,N(x,y,k)

Pit1 xyk =
Ti,N(x,y,k)

Layeri Layeri+l

Lin ZHANG, SSE, 2017



&/ Convolutional neural network

e Then, we perform pooling

— Max-pooling partitions the input image into a set of
rectangles, and for each sub-region, outputs the maximum
value

— Non-linear down-sampling

— The number of output maps is the same as the number of
input maps, but the resolution is reduced

— Reduce the computational complexity for upper layers and
provide a form of translation invariance

— Average pooling can also be used

Lin ZHANG, SSE, 2017



27/ Convolutional neural network

e Then, we perform pooling

Ranzato CVPR’13

Input feature maps output feature maps

Lin ZHANG, SSE, 2017



w7 Convolutional neural network

e Typical architecture of CNN
— Convolutional layer increases the number of feature maps
— Pooling layer decreases spatial resolution
— LCN and pooling are optional at each stage

One stage (zoom)

—| Convol. > LCN —» Pooling —>

——3-Convol. » LCN »| Pooling f———p-

Ranzato CVPR’13
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w7 Convolutional neural network

e Typical architecture of CNN

Convol.| ¥ )
l] g : LCN Pooling
Example with only two filters. Ranzato CVPR’13

Lin ZHANG, SSE, 2017




Convolutional neural network

e Typical architecture of CNN
One stage (zoom)

Convol.
LCN

A hidden unit in the first hidden layer is influenced by a small
neighborhood (equal to size of filter). Ranzato CVPR’13

Lin ZHANG, SSE, 2017




w7 Convolutional neural network

e Typical architecture of CNN

One stage (zoom)

Whole system

||l'lPUt Class
mage Labels
Fully Conn. |

Layers

1% stage 2" stage 3" stage

After a few stages, residual spatial resolution is very small.
We have learned a descriptor for the whole image. Ranzato CVPR’13

Lin ZHANG, SSE, 2017



w7 Convolutional neural network

e Typical architecture of CNN

Convolution Pooling

Lin ZHANG, SSE, 2017



) Convolutional neural network

e Some notes about the CNN layers in most recent net
architectures

— Spatial pooling (such as max pooling) is not recommended now. It
is usually replaced by a strided convolution, allowing the network
to learn its own spatial downsampling

— Fully connected layers are not recommended now; instead, the
last layer is replaced by global average pooling (for classification
problems, the number of feature map channels of the last layer
should be the same as the number of classes

Lin ZHANG, SSE, 2017



&/ Convolutional neural network

e Example:

— Train a digit classification model (LeNet) and then test it

234

Finish this exercise in lab session

Lin ZHANG, SSE, 2017




&/ Convolutional neural network

e Opensource platforms for CNN
— CAFFE official, http://caffe.berkeleyvision.org/
— Tensorflow, https://www.tensorflow.org/

— Pytorch, www.pytorch.org/

— MatConvNet, http://www.vlfeat.org/matconvnet/

— Theano, http://deeplearning.net/software/theano/

Lin ZHANG, SSE, 2017



w7 Convolutional neural network

e An online tool for network architecture visualization
— http://ethereon.github.io/netscope/quickstart.html

— Network architecture conforms to the CAFFE prototxt format

— The parameter settings and the output dimension of each
layer can be conveniently observed

conv1_v8 - Convolution

convl_v8

relul_v8

relul_v8 RelU  InPlace

po ol1.v8 blob shapes

Lin ZHANG, SSE, 2017




7 Qutline

e Basic concepts

e Linear model

e Neural network

e Convolutional neural network (CNN)

e Modern CNN architectures

— AlexNet

— NIN

— GoogleNet
— ResNet

— DenseNet

e CNN for object detection

Lin ZHANG, SSE, 2017



&) AlexNet (NIPS 2012)

e AlexNet: CNN for object recognition on ImageNet
challenge

— Trained on one million images of 1000 categories collected
from the web with two GPU. 2GB RAM on each GPU. 5GB of
system memory

— Training lasts for one week

— Google and Baidu announced their new visual search
engines with the same technology six months after that

— Google observed that the accuracy of their visual search
engine was doubled

[1] A. Krizhevsky et al., ImageNet classification with deep convolutional neural
networks, in Proc. NIPS, 2012

Lin ZHANG, SSE, 2017



&) AlexNet (NIPS 2012)

e ImageNet

- http'//www image-net.org/
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poster created by Fengjun Lv using VIPBase
images courtesy of ImageNet (http://www.image-net.org/challenges/LSVRC/2010/index)



\EAIeXNet (NIPS 2012)

e Architecture of AlexNet

— 5 convolutional layers and 2 fully connected layers for
learning features

— Max-pooling layers follow first, second, and fifth
convolutional layers

55 . .
27

27

13 13 13
N
11‘ I
5 _— | = =l — —_— - »
| IN_ || ~ % T 13 "l 13 3& H 13 dense | |dense

77
I//
V4
“‘QI
\
/
\l
&7
\
=
\ l
gl
w
N

27 384 384 256 100C

55 v
ax
256 ) L] L]
Stride\| o¢ | PO°liNg pooling
S\ B2

3
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@) AlexNet (NIPS 2012)

e Architecture of AlexNet

nv\\

3

Lin ZHANG, SSE, 2017

— The first time deep model is shown to be effective on large
scale computer vision task

— The first time a very large scale deep model is adopted

— GPU is shown to be very effective on this large deep model

55

77
|,

Stride
of 4

55
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Max
pooling
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pooling
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&) Network In Network (NIN, ICLR 2014)

e Main idea of NIN

— Conventional convolutional layers uses linear filters followed
by a nonlinear activation function to abstract the
information within a receptive field

— Instead, NIN uses micro neural networks with more complex
structures to abstract the data within the receptive field

— The feature maps are obtained by sliding the micro network
over the input in a similar manner as CNN

— Moreover, they use global average pooling over feature
maps in the classification layer, which is easier to interpret
and less prone to overfitting than traditional fully connected
layers

[1] M. Liu et al., Network in network, in Proc. ICLR, 2014

Lin ZHANG, SSE, 2017



n
.: \:1.:_:: 5 _{T- /
A :,'w’ .. AN e )
e OO de

) .1;; R _‘\ /

p N /

(a) Linear convolution layer

(the last layer of MLP has n nodes)
(b) Mlpconv layer

e Comparison of linear convolution layer and mlpconv layer

— Both the layers map the local receptive field to an output feature

vector

— The mlpconv layer maps the input local patch to the output
feature vector with a multilayer perceptron (MLP) consisting of
multiple fully connected layers with nonlinear activation functions

Lin ZHANG, SSE, 2017
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The overall structure of NIN. The last layer is the global average pooling

e More about global average pooling
— Fully connected layers are prone to overfitting

— If there are c classes, the last MLP layer should output Cc feature

maps, one feature map for each corresponding category of the
classification task

— Take the average of each feature map to get a ¢ dimensional
vector for softmax classification

Lin ZHANG, SSE, 2017



& Network In Network (NIN, ICLR 2014)

* NIN can be implemented with conventional convolutional
layers

For a mlpconv layer, suppose that the input feature map is of

the size MxMx 32, the expected output feature map is of the size

M x M x 64, the receptive field is 5x 5 ; the mlpconv layer has 2 hidden
layers, whose node numbers are 16 and 32, respectively.

How to implement this mlpconv
layer with convolutional layers?

Lin ZHANG, SSE, 2017




) GooglLeNet (CVPR 2015)

e Main idea: make the network deeper and wider, while
keeping the number of parameters

e |nception module

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions & A )

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

[1] C. Szegedy et al., Going deeper with convolutions, in Proc. CVPR, 2015

Lin ZHANG, SSE, 2017



&) GooglLeNet (CVPR 2015)

e Many Inception modules can stack together to form a
very deep network

e GoogleNet refers to the version the authors submitted
for the ILSVRC 2014 competition

— This network consists 27 layers (including pooling layers)

Lin ZHANG, SSE, 2017



) ResNet (CVPR 2016 Best Paper)

e What is the problem of stacking more layers using
conventional CNNs?

— Vanishing gradient, which can hamper the convergence
— Accuracy get saturated, and then degraded

|" 20
"y
l1 56-layer

A

20-laver

\\/S(i-la}'c:r
'\_/\_/‘\/

20-layer

training error (%)
test error (%)

0k [} k.
0 0 1

: ﬂcrj(le4;

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain™ networks. The deeper network
has higher training error, and thus test error.

2 3 3
iter. (1e4)

[1] K. He et al., Deep residual learning for image recognition, in Proc. CVPR, 2016
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&/ ResNet (CVPR 2016 Best Paper)

|s there any better way to design deeper networks?
Answer: Residual learning

Xl X

weight layer weight layer

X

weight layer weight layer 'dentity mapping
H(x) l F(x) l
C-? H(x)=F(x)+x
Conventional CNN Residual block

Lin ZHANG, SSE, 2017



&) ResNet (CVPR 2016 Best Paper)

e |t is easier to optimize the residual mapping (F(x))
than to optimize the original mapping (H(x))

e |dentity mapping is implemented by shortcut
e A residual learning block is defined as,

y=F(x, W;})+x

where x and y are the input and output vectors of the layers

F+x is performed by a shortcut connection and element-
wise addition

Note: If the dimensions of F and x are not equal (usually caused by
changing the numbers of input and output channels), a linear

projection W, (implemented with 1*1 convolution) is performed
on x to match the dimensions,

y:F (Xa {\Ni }) +WSX



& ResNet (CVPR 2016 Best Paper)

e |t is easier to optimize the residual mapping (F(x))
than to optimize the original mapping (H(x))

e |dentity mapping is implemented by shortcut
e A residual learning block is defined as,

y=F(x,W;j)+x

where x and y are the input and output vectors of the layers

F+x is performed by a shortcut connection and element-
wise addition

| highly recommend you to take a look the prototxt file of ResNet

(https://qgithub.com/KaimingHe/deep-residual-networks)

Lin ZHANG, SSE, 2017



) DenseNet (CVPR 2017 Best Paper)

e Highly motivated by ResNet

e A DenseNet comprises “dense blocks” and transition
layers

— Within a dense block, connect all layers with each other in a feed-
forward fashion

— In contrast to ResNet, DenseNet combine features by
concatenating them

— The number of output feature maps of each layer is set as a
constant within a dense block and is called as “growth rate”

— Between two blocks, there is a transition layer, consisting of batch
normalization, 1x1convolution, and average pooling

[1] G. Huang et al., Densely connected convolutional networks, in Proc. CVPR, 2017

Lin ZHANG, SSE, 2017



&) DenseNet (CVPR 2017 Best Paper)

e Highly motivated by ResNet

e A DenseNet comprises “dense blocks” and transition
layers

A sample dense block, whose growth rate

Lin ZHANG, SSE, 2017



&% DenseNet (CVPR 2017 Best Paper)

e Highly motivated by ResNet
e A DenseNet comprises “dense blocks” and transition

layers
Input B o L o
Prediction
ol | Dense Block 1 8l |5 Dense Block 2 o |5 Dense Block 3 .
>8> (8>S 181581 8 L3 1 »| “horse”
2 S22 T =22 [H T

A sample DenseNet with three dense blocks

Lin ZHANG, SSE, 2017



&) DenseNet (CVPR 2017 Best Paper)

e Highly motivated by ResNet

e A DenseNet comprises “dense blocks” and transition
layers

e More details about DenseNet design

— Bottleneck layers. A 1x1 convolution layer can be introduced as
bottleneck layer before each 3x 3 convolution to reduce the
number of input feature maps, and thus to improve
computational efficiency

— Compression. If a dense block contains m feature maps, we let the
following transition layer generate #m output feature maps
where ) < @ <1 is referred to as the compression factor

Lin ZHANG, SSE, 2017
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e Basic concepts

e Linear model

e Neural network

e Convolutional neural network (CNN)
e Modern CNN architectures

e CNN for object detection

Lin ZHANG, SSE, 2017



&/ Background

e Detection is different from classification

— An image classification problem is predicting the label of an
image among the predefined labels; It assumes that there is
single object of interest in the image and it covers a
significant portion of image

— Detection is about not only finding the class of object but
also localizing the extent of an object in the image; the
object can be lying anywhere in the image and can be of any
size (scale)

Lin ZHANG, SSE, 2017



Multiple objects detection
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27 Background

e Traditional methods of detection involved using a block-wise orientation
histogram (SIFT or HOG) feature which could not achieve high accuracy in
standard datasets such as PASCAL VOC; these methods encode a very low
level characteristics of the objects and therefore are not able to distinguish
well among the different labels

e Deep learning based methods have become the state-of-the-art in object
detection in image; they construct a representation in a hierarchical manner
with increasing order of abstraction from lower to higher levels of neural
network

Lin ZHANG, SSE, 2017



&/ Background

e Recent developments of CNN based object detectors
— R-CNN (CVPR 2014)
— Fast-RCNN (ICCV 2015)
— Faster-RCNN (NIPS 2015)
— Yolo (CVPR 2016)
— SSD (ECCV 1016)
— Yolov2 (CVPR 2017)

Lin ZHANG, SSE, 2017



e Brute-force idea

— One could perform detection by carrying out a classification
on different sub-windows or patches or regions extracted
from the image. The patch with high probability will not only
the class of that region but also implicitly gives its location
too in the image

— One brute force method is to run classification on all the
sub-windows formed by sliding different sized patches (to
cover each and every location and scale) all through the
image

Quite Slow!!!

Lin ZHANG, SSE, 2017
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e R-CNN therefore uses an object proposal algorithm
(selective search) in its pipeline which gives out a number
(~2000) of TENTATIVE object locations

e These object regions are warped to fixed sized (227X227)
regions and are fed to a classification convolutional
network which gives the individual probability of the
region belonging to background and classes

Lin ZHANG, SSE, 2017



Region-based Convolution Networks (R-CNNs)

aeroplane? no.

= =
.%,:
.'f‘ . .‘
+ l'- !i‘ »
- e

— erson? yes.
e Person” ¥
-
W tvmonitor? no.
Input Extract region . Compute CNN Classify and refine
image proposals (~2k / image) features on regions
e.g., selective search regions

[van de Sande, Uijlings et al.]
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/ Fast-RCNN

e Compared to RCNN

— A major change is a single network with two loss branches
pertaining to soft-max classification and bounding box
regression

— This multitask objective is a salient feature of Fast-RCNN as it
no longer requires training of the network independently for
classification and localization

Outputs: bb ox
___.: DEE‘I'J % softmax regressor
ConvNet o == !
S

|| Rol . FC L FC
‘ pooling

IE ¢ — - . | layer m_FlEs
Y. AR R BT o cTion: J R
| g I Corw\ Rol feature

feature map vector

Foreach Rol
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&)/ Faster-RCNN

e Compared to Fast-RCNN

— Faster-RCNN replaces Selective Search with CNN itself for
generating the region proposals (called RPN-region proposal
network) which gives out tentative regions at almost
negligible amount of time

Lin ZHANG, SSE, 2017



2%/ Yolo (YoloV2) is a state-of-the-art method

e Yolo (You Only Look Once)

— The major exceptional idea is that it tackles the object
detection problem as a regression problem

— A single neural network predicts bounding boxes and class
probabilities directly from full images in one evaluation

— The whole detection pipeline is a single network
— It is extremely fast; With TitanX, it can process ~50 frames/s

Lin ZHANG, SSE, 2017



Yolo (YoloV2) is a state-of-the-art method

448

n2
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2%/ Yolo (YoloV2) is a state-of-the-art method

e YoloV2
— It is a quite recent extension for Yolo

— It extends Yolo in the following aspects, batch normalization,
high resolution classifier, convolutional with anchor boxes,
fine-grained features, multi-scale training

— The authors provide both Linux and Windows versions

Lin ZHANG, SSE, 2017



Thanks for your attention
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