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1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (Pθ)θ∈Rd and finding the one that maximized the likelihood on our data:
if we have real data examples {x(i)}mi=1, we would solve the problem

max
θ∈Rd

1

m

m∑
i=1

logPθ(x
(i))

If the real data distribution Pr admits a density and Pθ is the distribution of the
parametrized density Pθ, then, asymptotically, this amounts to minimizing the
Kullback-Leibler divergence KL(Pr‖Pθ).

For this to make sense, we need the model density Pθ to exist. This is not
the case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model manifold
and the true distribution’s support have a non-negligible intersection (see [1]), and
this means that the KL distance is not defined (or simply infinite).

The typical remedy is to add a noise term to the model distribution. This is why
virtually all generative models described in the classical machine learning literature
include a noise component. In the simplest case, one assumes a Gaussian noise
with relatively high bandwidth in order to cover all the examples. It is well known,
for instance, that in the case of image generation models, this noise degrades the
quality of the samples and makes them blurry. For example, we can see in the
recent paper [23] that the optimal standard deviation of the noise added to the
model when maximizing likelihood is around 0.1 to each pixel in a generated image,
when the pixels were already normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the samples of their models,
they don’t add the noise term on which they report likelihood numbers. In other
words, the added noise term is clearly incorrect for the problem, but is needed to
make the maximum likelihood approach work.
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Rather than estimating the density of Pr which may not exist, we can define a
random variable Z with a fixed distribution p(z) and pass it through a paramet-
ric function gθ : Z → X (typically a neural network of some kind) that directly
generates samples following a certain distribution Pθ. By varying θ, we can change
this distribution and make it close to the real data distribution Pr. This is useful
in two ways. First of all, unlike densities, this approach can represent distribu-
tions confined to a low dimensional manifold. Second, the ability to easily generate
samples is often more useful than knowing the numerical value of the density (for
example in image superresolution or semantic segmentation when considering the
conditional distribution of the output image given the input image). In general, it
is computationally difficult to generate samples given an arbitrary high dimensional
density [16].

Variational Auto-Encoders (VAEs) [9] and Generative Adversarial Networks
(GANs) [4] are well known examples of this approach. Because VAEs focus on
the approximate likelihood of the examples, they share the limitation of the stan-
dard models and need to fiddle with additional noise terms. GANs offer much more
flexibility in the definition of the objective function, including Jensen-Shannon [4],
and all f -divergences [17] as well as some exotic combinations [6]. On the other
hand, training GANs is well known for being delicate and unstable, for reasons
theoretically investigated in [1].

In this paper, we direct our attention on the various ways to measure how
close the model distribution and the real distribution are, or equivalently, on the
various ways to define a distance or divergence ρ(Pθ,Pr). The most fundamental
difference between such distances is their impact on the convergence of sequences
of probability distributions. A sequence of distributions (Pt)t∈N converges if and
only if there is a distribution P∞ such that ρ(Pt,P∞) tends to zero, something that
depends on how exactly the distance ρ is defined. Informally, a distance ρ induces a
weaker topology when it makes it easier for a sequence of distribution to converge.1

Section 2 clarifies how popular probability distances differ in that respect.
In order to optimize the parameter θ, it is of course desirable to define our model

distribution Pθ in a manner that makes the mapping θ 7→ Pθ continuous. Continuity
means that when a sequence of parameters θt converges to θ, the distributions
Pθt also converge to Pθ. However, it is essential to remember that the notion
of the convergence of the distributions Pθt depends on the way we compute the
distance between distributions. The weaker this distance, the easier it is to define a
continuous mapping from θ-space to Pθ-space, since it’s easier for the distributions
to converge. The main reason we care about the mapping θ 7→ Pθ to be continuous
is as follows. If ρ is our notion of distance between two distributions, we would
like to have a loss function θ 7→ ρ(Pθ,Pr) that is continuous, and this is equivalent
to having the mapping θ 7→ Pθ be continuous when using the distance between
distributions ρ.

1More exactly, the topology induced by ρ is weaker than that induced by ρ′ when the set of
convergent sequences under ρ is a superset of that under ρ′.
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The contributions of this paper are:

• In Section 2, we provide a comprehensive theoretical analysis of how the Earth
Mover (EM) distance behaves in comparison to popular probability distances
and divergences used in the context of learning distributions.

• In Section 3, we define a form of GAN called Wasserstein-GAN that mini-
mizes a reasonable and efficient approximation of the EM distance, and we
theoretically show that the corresponding optimization problem is sound.

• In Section 4, we empirically show that WGANs cure the main training prob-
lems of GANs. In particular, training WGANs does not require maintaining
a careful balance in training of the discriminator and the generator, and does
not require a careful design of the network architecture either. The mode
dropping phenomenon that is typical in GANs is also drastically reduced.
One of the most compelling practical benefits of WGANs is the ability to
continuously estimate the EM distance by training the discriminator to op-
timality. Plotting these learning curves is not only useful for debugging and
hyperparameter searches, but also correlate remarkably well with the observed
sample quality.

2 Different Distances

We now introduce our notation. Let X be a compact metric set (such as the
space of images [0, 1]d) and let Σ denote the set of all the Borel subsets of X . Let
Prob(X ) denote the space of probability measures defined on X . We can now define
elementary distances and divergences between two distributions Pr,Pg ∈ Prob(X ):

• The Total Variation (TV) distance

δ(Pr,Pg) = sup
A∈Σ
|Pr(A)− Pg(A)| .

• The Kullback-Leibler (KL) divergence

KL(Pr‖Pg) =

∫
log

(
Pr(x)

Pg(x)

)
Pr(x)dµ(x) ,

where both Pr and Pg are assumed to be absolutely continuous, and therefore
admit densities, with respect to a same measure µ defined on X .2 The KL
divergence is famously assymetric and possibly infinite when there are points
such that Pg(x) = 0 and Pr(x) > 0.

2Recall that a probability distribution Pr ∈ Prob(X ) admits a density pr(x) with respect to µ,
that is, ∀A ∈ Σ, Pr(A) =

∫
A Pr(x)dµ(x), if and only it is absolutely continuous with respect to µ,

that is, ∀A ∈ Σ, µ(A) = 0 ⇒ Pr(A) = 0 .
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• The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL(Pr‖Pm) +KL(Pg‖Pm) ,

where Pm is the mixture (Pr + Pg)/2. This divergence is symmetrical and
always defined because we can choose µ = Pm.

• The Earth-Mover (EM) distance or Wasserstein-1

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ
[
‖x− y‖

]
, (1)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals
are respectively Pr and Pg. Intuitively, γ(x, y) indicates how much “mass”
must be transported from x to y in order to transform the distributions Pr
into the distribution Pg. The EM distance then is the “cost” of the optimal
transport plan.

The following example illustrates how apparently simple sequences of probability
distributions converge under the EM distance but do not converge under the other
distances and divergences defined above.

Example 1 (Learning parallel lines). Let Z ∼ U [0, 1] the uniform distribution on
the unit interval. Let P0 be the distribution of (0, Z) ∈ R2 (a 0 on the x-axis and
the random variable Z on the y-axis), uniform on a straight vertical line passing
through the origin. Now let gθ(z) = (θ, z) with θ a single real parameter. It is easy
to see that in this case,

• W (P0,Pθ) = |θ|,

• JS(P0,Pθ) =

{
log 2 if θ 6= 0 ,

0 if θ = 0 ,

• KL(Pθ‖P0) = KL(P0‖Pθ) =

{
+∞ if θ 6= 0 ,

0 if θ = 0 ,

• and δ(P0,Pθ) =

{
1 if θ 6= 0 ,

0 if θ = 0 .

When θt → 0, the sequence (Pθt)t∈N converges to P0 under the EM distance, but
does not converge at all under either the JS, KL, reverse KL, or TV divergences.
Figure 1 illustrates this for the case of the EM and JS distances.

Example 1 gives us a case where we can learn a probability distribution over a low
dimensional manifold by doing gradient descent on the EM distance. This cannot
be done with the other distances and divergences because the resulting loss function
is not even continuous. Although this simple example features distributions with
disjoint supports, the same conclusion holds when the supports have a non empty
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Figure 1: These plots show ρ(Pθ,P0) as a function of θ when ρ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,Pθ) is a continuous loss function on θ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z × Rd → X be a function, that will
be denoted gθ(z) with z the first coordinate and θ the second. Let Pθ denote the
distribution of gθ(Z). Then,

1. If g is continuous in θ, so is W (Pr,Pθ).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,Pθ)
is continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,Pθ) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let gθ be any feedforward neural network4 parameterized by θ, and
p(z) a prior over z such that Ez∼p(z)[‖z‖] < ∞ (e.g. Gaussian, uniform, etc.).

3 The argument for why this happens, and indeed how we arrived to the idea that Wasserstein
is what we should really be optimizing is displayed in Appendix A. We strongly encourage the
interested reader who is not afraid of the mathematics to go through it.

4By a feedforward neural network we mean a function composed by affine transformations and
pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,
softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more
technical (even though very similar) so we omit it.
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Then assumption 1 is satisfied and therefore W (Pr,Pθ) is continuous everywhere
and differentiable almost everywhere.

Proof. See Appendix C

All this shows that EM is a much more sensible cost function for our problem
than at least the Jensen-Shannon divergence. The following theorem describes the
relative strength of the topologies induced by these distances and divergences, with
KL the strongest, followed by JS and TV, and EM the weakest.

Theorem 2. Let P be a distribution on a compact space X and (Pn)n∈N be a
sequence of distributions on X . Then, considering all limits as n→∞,

1. The following statements are equivalent

• δ(Pn,P)→ 0 with δ the total variation distance.

• JS(Pn,P)→ 0 with JS the Jensen-Shannon divergence.

2. The following statements are equivalent

• W (Pn,P)→ 0.

• Pn
D−→ P where

D−→ represents convergence in distribution for random
variables.

3. KL(Pn‖P)→ 0 or KL(P‖Pn)→ 0 imply the statements in (1).

4. The statements in (1) imply the statements in (2).

Proof. See Appendix C

This highlights the fact that the KL, JS, and TV distances are not sensible
cost functions when learning distributions supported by low dimensional manifolds.
However the EM distance is sensible in that setup. This obviously leads us to the
next section where we introduce a practical approximation of optimizing the EM
distance.

3 Wasserstein GAN

Again, Theorem 2 points to the fact that W (Pr,Pθ) might have nicer properties
when optimized than JS(Pr,Pθ). However, the infimum in (1) is highly intractable.
On the other hand, the Kantorovich-Rubinstein duality [22] tells us that

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (2)

where the supremum is over all the 1-Lipschitz functions f : X → R. Note that if
we replace ‖f‖L ≤ 1 for ‖f‖L ≤ K (consider K-Lipschitz for some constant K),
then we end up with K ·W (Pr,Pg). Therefore, if we have a parameterized family of
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functions {fw}w∈W that are all K-Lipschitz for some K, we could consider solving
the problem

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z)[fw(gθ(z)] (3)

and if the supremum in (2) is attained for some w ∈ W (a pretty strong assumption
akin to what’s assumed when proving consistency of an estimator), this process
would yield a calculation of W (Pr,Pθ) up to a multiplicative constant. Further-
more, we could consider differentiating W (Pr,Pθ) (again, up to a constant) by
back-proping through equation (2) via estimating Ez∼p(z)[∇θfw(gθ(z))]. While this
is all intuition, we now prove that this process is principled under the optimality
assumption.

Theorem 3. Let Pr be any distribution. Let Pθ be the distribution of gθ(Z) with Z
a random variable with density p and gθ a function satisfying assumption 1. Then,
there is a solution f : X → R to the problem

max
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

and we have
∇θW (Pr,Pθ) = −Ez∼p(z)[∇θf(gθ(z))]

when both terms are well-defined.

Proof. See Appendix C

Now comes the question of finding the function f that solves the maximization
problem in equation (2). To roughly approximate this, something that we can do
is train a neural network parameterized with weights w lying in a compact space
W and then backprop through Ez∼p(z)[∇θfw(gθ(z))], as we would do with a typical
GAN. Note that the fact that W is compact implies that all the functions fw will
be K-Lipschitz for some K that only depends onW and not the individual weights,
therefore approximating (2) up to an irrelevant scaling factor and the capacity of
the ‘critic’ fw. In order to have parameters w lie in a compact space, something
simple we can do is clamp the weights to a fixed box (say W = [−0.01, 0.01]l) after
each gradient update. The Wasserstein Generative Adversarial Network (WGAN)
procedure is described in Algorithm 1.

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the
clipping parameter is large, then it can take a long time for any weights to reach
their limit, thereby making it harder to train the critic till optimality. If the clipping
is small, this can easily lead to vanishing gradients when the number of layers is
big, or batch normalization is not used (such as in RNNs). We experimented with
simple variants (such as projecting the weights to a sphere) with little difference, and
we stuck with weight clipping due to its simplicity and already good performance.
However, we do leave the topic of enforcing Lipschitz constraints in a neural network
setting for further investigation, and we actively encourage interested researchers
to improve on this method.
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Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values α = 0.00005, c = 0.01, m = 64, ncritic = 5.

Require: : α, the learning rate. c, the clipping parameter. m, the batch size.
ncritic, the number of iterations of the critic per generator iteration.

Require: : w0, initial critic parameters. θ0, initial generator’s parameters.
1: while θ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x(i)}mi=1 ∼ Pr a batch from the real data.
4: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.
5: gw ← ∇w

[
1
m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z

(i)))
]

6: w ← w + α · RMSProp(w, gw)
7: w ← clip(w,−c, c)
8: end for
9: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

10: gθ ← −∇θ 1
m

∑m
i=1 fw(gθ(z

(i)))
11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

The fact that the EM distance is continuous and differentiable a.e. means that
we can (and should) train the critic till optimality. The argument is simple, the
more we train the critic, the more reliable gradient of the Wasserstein we get, which
is actually useful by the fact that Wasserstein is differentiable almost everywhere.
For the JS, as the discriminator gets better the gradients get more reliable but the
true gradient is 0 since the JS is locally saturated and we get vanishing gradients,
as can be seen in Figure 1 of this paper and Theorem 2.4 of [1]. In Figure 2
we show a proof of concept of this, where we train a GAN discriminator and a
WGAN critic till optimality. The discriminator learns very quickly to distinguish
between fake and real, and as expected provides no reliable gradient information.
The critic, however, can’t saturate, and converges to a linear function that gives
remarkably clean gradients everywhere. The fact that we constrain the weights
limits the possible growth of the function to be at most linear in different parts of
the space, forcing the optimal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the critic till optimality
makes it impossible to collapse modes when we do. This is due to the fact that mode
collapse comes from the fact that the optimal generator for a fixed discriminator
is a sum of deltas on the points the discriminator assigns the highest values, as
observed by [4] and highlighted in [11].

In the following section we display the practical benefits of our new algorithm,
and we provide an in-depth comparison of its behaviour and that of traditional
GANs.
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Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the traditional GAN discriminator saturates and results in vanishing gra-
dients. Our WGAN critic provides very clean gradients on all parts of the space.

4 Empirical Results

We run experiments on image generation using our Wasserstein-GAN algorithm and
show that there are significant practical benefits to using it over the formulation
used in standard GANs.

We claim two main benefits:

• a meaningful loss metric that correlates with the generator’s convergence and
sample quality

• improved stability of the optimization process

4.1 Experimental Procedure

We run experiments on image generation. The target distribution to learn is the
LSUN-Bedrooms dataset [24] – a collection of natural images of indoor bedrooms.
Our baseline comparison is DCGAN [18], a GAN with a convolutional architecture
trained with the standard GAN procedure using the − logD trick [4]. The generated
samples are 3-channel images of 64x64 pixels in size. We use the hyper-parameters
specified in Algorithm 1 for all of our experiments.
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Figure 3: Training curves and samples at different stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substantially high
learning rates (so training failed). Loss is constant and samples are constant as well. The
training curves were passed through a median filter for visualization purposes.

4.2 Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f (lines 2–8 in Algo-
rithm 1) relatively well before each generator update (line 10 in Algorithm 1), the
loss function at this point is an estimate of the EM distance, up to constant factors
related to the way we constrain the Lipschitz constant of f .

Our first experiment illustrates how this estimate correlates well with the quality
of the generated samples. Besides the convolutional DCGAN architecture, we also
ran experiments where we replace the generator or both the generator and the critic
by 4-layer ReLU-MLP with 512 hidden units.

Figure 3 plots the evolution of the WGAN estimate (3) of the EM distance
during WGAN training for all three architectures. The plots clearly show that
these curves correlate well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN literature that such a property is
shown, where the loss of the GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial networks as one does not need
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Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper
right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample
quality and loss. Bottom: MLP with both generator and discriminator. The curve goes up
and down regardless of sample quality. All training curves were passed through the same
median filter as in Figure 3.

to stare at the generated samples to figure out failure modes and to gain information
on which models are doing better over others.

However, we do not claim that this is a new method to quantitatively evaluate
generative models yet. The constant scaling factor that depends on the critic’s
architecture means it’s hard to compare models with different critics. Even more,
in practice the fact that the critic doesn’t have infinite capacity makes it hard to
know just how close to the EM distance our estimate really is. This being said,
we have succesfully used the loss metric to validate our experiments repeatedly and
without failure, and we see this as a huge improvement in training GANs which
previously had no such facility.

In contrast, Figure 4 plots the evolution of the GAN estimate of the JS distance
during GAN training. More precisely, during GAN training, the discriminator is
trained to maximize

L(D, gθ) = Ex∼Pr [logD(x)] + Ex∼Pθ [log(1−D(x))]

which is is a lower bound of 2JS(Pr,Pθ)−2 log 2. In the figure, we plot the quantity
1
2L(D, gθ) + log 2, which is a lower bound of the JS distance.

This quantity clearly correlates poorly the sample quality. Note also that the
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JS estimate usually stays constant or goes up instead of going down. In fact it
often remains very close to log 2 ≈ 0.69 which is the highest value taken by the JS
distance. In other words, the JS distance saturates, the discriminator has zero loss,
and the generated samples are in some cases meaningful (DCGAN generator, top
right plot) and in other cases collapse to a single nonsensical image [4]. This last
phenomenon has been theoretically explained in [1] and highlighted in [11].

When using the − logD trick [4], the discriminator loss and the generator loss
are different. Figure 8 in Appendix E reports the same plots for GAN training, but
using the generator loss instead of the discriminator loss. This does not change the
conclusions.

Finally, as a negative result, we report that WGAN training becomes unstable at
times when one uses a momentum based optimizer such as Adam [8] (with β1 > 0)
on the critic, or when one uses high learning rates. Since the loss for the critic is
nonstationary, momentum based methods seemed to perform worse. We identified
momentum as a potential cause because, as the loss blew up and samples got worse,
the cosine between the Adam step and the gradient usually turned negative. The
only places where this cosine was negative was in these situations of instability. We
therefore switched to RMSProp [21] which is known to perform well even on very
nonstationary problems [13].

4.3 Improved stability

One of the benefits of WGAN is that it allows us to train the critic till optimality.
When the critic is trained to completion, it simply provides a loss to the generator
that we can train as any other neural network. This tells us that we no longer need
to balance generator and discriminator’s capacity properly. The better the critic,
the higher quality the gradients we use to train the generator.

We observe that WGANs are much more robust than GANs when one varies
the architectural choices for the generator. We illustrate this by running experi-
ments on three generator architectures: (1) a convolutional DCGAN generator, (2)
a convolutional DCGAN generator without batch normalization and with a con-
stant number of filters, and (3) a 4-layer ReLU-MLP with 512 hidden units. The
last two are known to perform very poorly with GANs. We keep the convolutional
DCGAN architecture for the WGAN critic or the GAN discriminator.

Figures 5, 6, and 7 show samples generated for these three architectures using
both the WGAN and GAN algorithms. We refer the reader to Appendix F for full
sheets of generated samples. Samples were not cherry-picked.

In no experiment did we see evidence of mode collapse for the WGAN
algorithm.
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Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was
able to produce samples.

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.

5 Related Work

There’s been a number of works on the so called Integral Probability Metrics (IPMs)
[15]. Given F a set of functions from X to R, we can define

dF (Pr,Pθ) = sup
f∈F

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (4)

as an integral probability metric associated with the function class F . It is easily
verified that if for every f ∈ F we have −f ∈ F (such as all examples we’ll consider),
then dF is nonnegative, satisfies the triangular inequality, and is symmetric. Thus,
dF is a pseudometric over Prob(X ).

While IPMs might seem to share a similar formula, as we will see different classes
of functions can yeald to radically different metrics.

• By the Kantorovich-Rubinstein duality [22], we know thatW (Pr,Pθ) = dF (Pr,Pθ)
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when F is the set of 1-Lipschitz functions. Furthermore, if F is the set of K-
Lipschitz functions, we get K ·W (Pr,Pθ) = dF (Pr,Pθ).

• When F is the set of all measurable functions bounded between -1 and 1 (or all
continuous functions between -1 and 1), we retrieve dF (Pr,Pθ) = δ(Pr,Pθ) the
total variation distance [15]. This already tells us that going from 1-Lipschitz
to 1-Bounded functions drastically changes the topology of the space, and the
regularity of dF (Pr,Pθ) as a loss function (as by Theorems 1 and 2).

• Energy-based GANs (EBGANs) [25] can be thought of as the generative ap-
proach to the total variation distance. This connection is stated and proven in
depth in Appendix D. At the core of the connection is that the discriminator
will play the role of f maximizing equation (4) while its only restriction is be-
ing between 0 and m for some constant m. This will yeald the same behaviour
as being restricted to be between −1 and 1 up to a constant scaling factor
irrelevant to optimization. Thus, when the discriminator approaches opti-
mality the cost for the generator will aproximate the total variation distance
δ(Pr,Pθ).
Since the total variation distance displays the same regularity as the JS, it can
be seen that EBGANs will suffer from the same problems of classical GANs
regarding not being able to train the discriminator till optimality and thus
limiting itself to very imperfect gradients.

• Maximum Mean Discrepancy (MMD) [5] is a specific case of integral proba-
bility metrics when F = {f ∈ H : ‖f‖∞ ≤ 1} for H some Reproducing Kernel
Hilbert Space (RKHS) associated with a given kernel k : X × X → R. As
proved on [5] we know that MMD is a proper metric and not only a pseudomet-
ric when the kernel is universal. In the specific case whereH = L2(X ,m) for m
the normalized Lebesgue measure on X , we know that {f ∈ Cb(X ), ‖f‖∞ ≤ 1}
will be contained in F , and therefore dF (Pr,Pθ) ≤ δ(Pr,Pθ) so the regularity
of the MMD distance as a loss function will be at least as bad as the one of the
total variation. Nevertheless this is a very extreme case, since we would need
a very powerful kernel to approximate the whole L2. However, even Gaus-
sian kernels are able to detect tiny noise patterns as recently evidenced by
[20]. This points to the fact that especially with low bandwidth kernels, the
distance might be close to a saturating regime similar as with total variation
or the JS. This obviously doesn’t need to be the case for every kernel, and
figuring out how and which different MMDs are closer to Wasserstein or total
variation distances is an interesting topic of research.

The great aspect of MMD is that via the kernel trick there is no need to
train a separate network to maximize equation (4) for the ball of a RKHS.
However, this has the disadvantage that evaluating the MMD distance has
computational cost that grows quadratically with the amount of samples used
to estimate the expectations in (4). This last point makes MMD have limited
scalability, and is sometimes inapplicable to many real life applications be-
cause of it. There are estimates with linear computational cost for the MMD
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[5] which in a lot of cases makes MMD very useful, but they also have worse
sample complexity.

• Generative Moment Matching Networks (GMMNs) [10, 2] are the genera-
tive counterpart of MMD. By backproping through the kernelized formula for
equation (4), they directly optimize dMMD(Pr,Pθ) (the IPM when F is as in
the previous item). As mentioned, this has the advantage of not requiring a
separate network to approximately maximize equation (4). However, GMMNs
have enjoyed limited applicability. Partial explanations for their unsuccess are
the quadratic cost as a function of the number of samples and vanishing gra-
dients for low-bandwidth kernels. Furthermore, it may be possible that some
kernels used in practice are unsuitable for capturing very complex distances
in high dimensional sample spaces such as natural images. This is properly
justified by the fact that [19] shows that for the typical Gaussian MMD test
to be reliable (as in it’s power as a statistical test approaching 1), we need the
number of samples to grow linearly with the number of dimensions. Since the
MMD computational cost grows quadratically with the number of samples
in the batch used to estimate equation (4), this makes the cost of having a
reliable estimator grow quadratically with the number of dimensions, which
makes it very inapplicable for high dimensional problems. Indeed, for some-
thing as standard as 64x64 images, we would need minibatches of size at least
4096 (without taking into account the constants in the bounds of [19] which
would make this number substantially larger) and a total cost per iteration
of 40962, over 5 orders of magnitude more than a GAN iteration when using
the standard batch size of 64.

That being said, these numbers can be a bit unfair to the MMD, in the
sense that we are comparing empirical sample complexity of GANs with the
theoretical sample complexity of MMDs, which tends to be worse. However,
in the original GMMN paper [10] they indeed used a minibatch of size 1000,
much larger than the standard 32 or 64 (even when this incurred in quadratic
computational cost). While estimates that have linear computational cost
as a function of the number of samples exist [5], they have worse sample
complexity, and to the best of our knowledge they haven’t been yet applied
in a generative context such as in GMMNs.

On another great line of research, the recent work of [14] has explored the use of
Wasserstein distances in the context of learning for Restricted Boltzmann Machines
for discrete spaces. The motivations at a first glance might seem quite different,
since the manifold setting is restricted to continuous spaces and in finite discrete
spaces the weak and strong topologies (the ones of W and JS respectively) coincide.
However, in the end there is more in commmon than not about our motivations.
We both want to compare distributions in a way that leverages the geometry of the
underlying space, and Wasserstein allows us to do exactly that.

Finally, the work of [3] shows new algorithms for calculating Wasserstein dis-
tances between different distributions. We believe this direction is quite important,
and perhaps could lead to new ways of evaluating generative models.
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6 Conclusion

We introduced an algorithm that we deemed WGAN, an alternative to traditional
GAN training. In this new model, we showed that we can improve the stability
of learning, get rid of problems like mode collapse, and provide meaningful learn-
ing curves useful for debugging and hyperparameter searches. Furthermore, we
showed that the corresponding optimization problem is sound, and provided exten-
sive theoretical work highlighting the deep connections to other distances between
distributions.
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A Why Wasserstein is indeed weak

We now introduce our notation. Let X ⊆ Rd be a compact set (such as [0, 1]d the
space of images). We define Prob(X ) to be the space of probability measures over
X . We note

Cb(X ) = {f : X → R, f is continuous and bounded}

Note that if f ∈ Cb(X ), we can define ‖f‖∞ = maxx∈X |f(x)|, since f is bounded.
With this norm, the space (Cb(X ), ‖ · ‖∞) is a normed vector space. As for any
normed vector space, we can define its dual

Cb(X )∗ = {φ : Cb(X )→ R, φ is linear and continuous}

and give it the dual norm ‖φ‖ = supf∈Cb(X ),‖f‖∞≤1 |φ(f)|.
With this definitions, (Cb(X )∗, ‖ · ‖) is another normed space. Now let µ be a

signed measure over X , and let us define the total variation distance

‖µ‖TV = sup
A⊆X

|µ(A)|

where the supremum is taken all Borel sets in X . Since the total variation is a
norm, then if we have Pr and Pθ two probability distributions over X ,

δ(Pr,Pθ) := ‖Pr − Pθ‖TV

is a distance in Prob(X ) (called the total variation distance).
We can consider

Φ : (Prob(X ), δ)→ (Cb(X )∗, ‖ · ‖)

where Φ(P)(f) := Ex∼P[f(x)] is a linear function over Cb(X ). The Riesz Represen-
tation theorem ([7], Theorem 10) tells us that Φ is an isometric immersion. This
tells us that we can effectively consider Prob(X ) with the total variation distance
as a subset of Cb(X )∗ with the norm distance. Thus, just to accentuate it one more
time, the total variation over Prob(X ) is exactly the norm distance over Cb(X )∗.

Let us stop for a second and analyze what all this technicality meant. The main
thing to carry is that we introduced a distance δ over probability distributions.
When looked as a distance over a subset of Cb(X )∗, this distance gives the norm
topology. The norm topology is very strong. Therefore, we can expect that not
many functions θ 7→ Pθ will be continuous when measuring distances between dis-
tributions with δ. As we will show later in Theorem 2, δ gives the same topology
as the Jensen-Shannon divergence, pointing to the fact that the JS is a very strong
distance, and is thus more propense to give a discontinuous loss function.

Now, all dual spaces (such as Cb(X )∗ and thus Prob(X )) have a strong topology
(induced by the norm), and a weak* topology. As the name suggests, the weak*
topology is much weaker than the strong topology. In the case of Prob(X ), the
strong topology is given by the total variation distance, and the weak* topology is
given by the Wasserstein distance (among others) [22].
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B Assumption definitions

Assumption 1. Let g : Z×Rd → X be locally Lipschitz between finite dimensional
vector spaces. We will denote gθ(z) it’s evaluation on coordinates (z, θ). We say
that g satisfies assumption 1 for a certain probability distribution p over Z if there
are local Lipschitz constants L(θ, z) such that

Ez∼p[L(θ, z)] < +∞

C Proofs of things

Proof of Theorem 1. Let θ and θ′ be two parameter vectors in Rd. Then, we will
first attempt to bound W (Pθ,Pθ′), from where the theorem will come easily. The
main element of the proof is the use of the coupling γ, the distribution of the joint
(gθ(Z), gθ′(Z)), which clearly has γ ∈ Π(Pθ,Pθ′).

By the definition of the Wasserstein distance, we have

W (Pθ,Pθ′) ≤
∫
X×X

‖x− y‖ dγ

= E(x,y)∼γ [‖x− y‖]
= Ez[‖gθ(z)− gθ′(z)‖]

If g is continuous in θ, then gθ(z) →θ→θ′ gθ′(z), so ‖gθ − gθ′‖ → 0 pointwise as
functions of z. Since X is compact, the distance of any two elements in it has to
be uniformly bounded by some constant M , and therefore ‖gθ(z)− gθ′(z)‖ ≤M for
all θ and z uniformly. By the bounded convergence theorem, we therefore have

W (Pθ,Pθ′) ≤ Ez[‖gθ(z)− gθ′(z)‖]→θ→θ′ 0

Finally, we have that

|W (Pr,Pθ)−W (Pr,Pθ′)| ≤W (Pθ,Pθ′)→θ→θ′ 0

proving the continuity of W (Pr,Pθ).
Now let g be locally Lipschitz. Then, for a given pair (θ, z) there is a constant

L(θ, z) and an open set U such that (θ, z) ∈ U , such that for every (θ′, z′) ∈ U we
have

‖gθ(z)− g′θ(z′)‖ ≤ L(θ, z)(‖θ − θ′‖+ ‖z − z′‖)
By taking expectations and z′ = z we

Ez[‖gθ(z)− gθ′(z)‖] ≤ ‖θ − θ′‖Ez[L(θ, z)]

whenever (θ′, z) ∈ U . Therefore, we can define Uθ = {θ′|(θ′, z) ∈ U}. It’s easy to
see that since U was open, Uθ is as well. Furthermore, by assumption 1, we can
define L(θ) = Ez[L(θ, z)] and achieve

|W (Pr,Pθ)−W (Pr,Pθ′)| ≤W (Pθ,Pθ′) ≤ L(θ)‖θ − θ′‖
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for all θ′ ∈ Uθ, meaning that W (Pr,Pθ) is locally Lipschitz. This obviously implies
that W (Pr,Pθ) is everywhere continuous, and by Radamacher’s theorem we know
it has to be differentiable almost everywhere.

The counterexample for item 3 of the Theorem is indeed Example 1.

Proof of Corollary 1. We begin with the case of smooth nonlinearities. Since g is
C1 as a function of (θ, z) then for any fixed (θ, z) we have L(θ, Z) ≤ ‖∇θ,xgθ(z)‖+ε
is an acceptable local Lipschitz constant for all ε > 0. Therefore, it suffices to prove

Ez∼p(z)[‖∇θ,zgθ(z)‖] < +∞

If H is the number of layers we know that ∇zgθ(z) =
∏H
k=1WkDk where Wk are

the weight matrices and Dk is are the diagonal Jacobians of the nonlinearities.
Let fi:j be the application of layers i to j inclusively (e.g. gθ = f1:H). Then,

∇Wk
gθ(z) =

((∏H
i=k+1WiDi

)
Dk

)
f1:k−1(z). We recall that if L is the Lipschitz

constant of the nonlinearity, then ‖Di‖ ≤ L and ‖f1:k−1(z)‖ ≤ ‖z‖Lk−1
∏k−1
i=1 Wi.

Putting this together,

‖∇z,θgθ(z)‖ ≤ ‖
H∏
i=1

WiDi‖+

H∑
k=1

‖

((
H∏

i=k+1

WiDi

)
Dk

)
f1:k−1(z)‖

≤ LH
K∏
i=H

‖Wi‖+

H∑
k=1

‖z‖LH
(
k−1∏
i=1

‖Wi‖

)(
H∏

i=k+1

‖Wi‖

)

If C1(θ) = LH
(∏H

i=1 ‖Wi‖
)

and C2(θ) =
∑H
k=1 L

H
(∏k−1

i=1 ‖Wi‖
)(∏H

i=k+1 ‖Wi‖
)

then
Ez∼p(z)[‖∇θ,zgθ(z)‖] ≤ C1(θ) + C2(θ)Ez∼p(z)[‖z‖] < +∞

finishing the proof

Proof of Theorem 2.

1. • (δ(Pn,P) → 0 ⇒ JS(Pn,P) → 0) — Let Pm be the mixture dis-
tribution Pm = 1

2Pn + 1
2P (note that Pm depends on n). It is easily

verified that δ(Pm,Pn) ≤ δ(Pn,P), and in particular this tends to 0 (as
does δ(Pm,P)). We now show this for completeness. Let µ be a signed
measure, we define ‖µ‖TV = supA⊆X |µ(A)|. for all Borel sets A. In this
case,

δ(Pm,Pn) = ‖Pm − Pn‖TV

= ‖1

2
P +

1

2
Pn − Pn‖TV

=
1

2
‖P− Pn‖TV

=
1

2
δ(Pn,P) ≤ δ(Pn,P)
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Let fn = dPn
dPm be the Radon-Nykodim derivative between Pn and the

mixture. Note that by construction for every Borel set A we have
Pn(A) ≤ 2Pm(A). If A = {fn > 3} then we get

Pn(A) =

∫
A

fn dPm ≥ 3Pm(A)

which implies Pm(A) = 0. This means that fn is bounded by 3 Pm(and
therefore Pn and P)-almost everywhere. We could have done this for any
constant larger than 2 but for our purposes 3 will sufice.

Let ε > 0 fixed, and An = {fn > 1 + ε}. Then,

Pn(An) =

∫
An

fn dPm ≥ (1 + ε)Pm(An)

Therefore,

εPm(An) ≤ Pn(An)− Pm(An)

≤ |Pn(An)− Pm(An)|
≤ δ(Pn,Pm)

≤ δ(Pn,P).

Which implies Pm(Am) ≤ 1
ε δ(Pn,P). Furthermore,

Pn(An) ≤ Pm(An) + |Pn(An)− Pm(An)|

≤ 1

ε
δ(Pn,P) + δ(Pn,Pm)

≤ 1

ε
δ(Pn,P) + δ(Pn,P)

≤
(

1

ε
+ 1

)
δ(Pn,P)

We now can see that

KL(Pn‖Pm) =

∫
log(fn) dPn

≤ log(1 + ε) +

∫
An

log(fn) dPn

≤ log(1 + ε) + log(3)Pn(An)

≤ log(1 + ε) + log(3)

(
1

ε
+ 1

)
δ(Pn,P)

Taking limsup we get 0 ≤ lim supKL(Pn‖Pm) ≤ log(1 + ε) for all ε > 0,
which means KL(Pn‖Pm)→ 0.

In the same way, we can define gn = dP
dPm , and

2Pm({gn > 3}) ≥ P({gn > 3}) ≥ 3Pm({gn > 3})
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meaning that Pm({gn > 3}) = 0 and therefore gn is bounded by 3 almost
everywhere for Pn,Pm and P. With the same calculation, Bn = {gn >
1 + ε} and

P(Bn) =

∫
Bn

gn dPm ≥ (1 + ε)Pm(Bn)

so Pm(Bn) ≤ 1
ε δ(P,Pm) → 0, and therefore P(Bn) → 0. We can now

show

KL(P‖Pm) =

∫
log(gn) dP

≤ log(1 + ε) +

∫
Bn

log(gn) dP

≤ log(1 + ε) + log(3)P(Bn)

so we achieve 0 ≤ lim supKL(P‖Pm) ≤ log(1+ε) and then KL(P‖Pm)→
0. Finally, we conclude

JS(Pn,P) =
1

2
KL(Pn‖Pm) +

1

2
KL(P‖Pm)→ 0

• (JS(Pn,P) → 0 ⇒ δ(Pn,P) → 0) — by a simple application of the
triangular and Pinsker’s inequalities we get

δ(Pn,P) ≤ δ(Pn,Pm) + δ(P,Pm)

≤
√

1

2
KL(Pn‖Pm) +

√
1

2
KL(P‖Pm)

≤ 2
√
JS(Pn,P)→ 0

2. This is a long known fact that W metrizes the weak* topology of (C(X ), ‖ ·
‖∞) on Prob(X ), and by definition this is the topology of convergence in
distribution. A proof of this can be found (for example) in [22].

3. This is a straightforward application of Pinsker’s inequality

δ(Pn,P) ≤
√

1

2
KL(Pn‖P)→ 0

δ(P,Pn) ≤
√

1

2
KL(P‖Pn)→ 0

4. This is trivial by recalling the fact that δ and W give the strong and weak*
topologies on the dual of (C(X ), ‖ · ‖∞) when restricted to Prob(X ).
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Proof of Theorem 3. Let us define

V (f̃ , θ) = Ex∼Pr [f̃(x)]− Ex∼Pθ [f̃(x)]

= Ex∼Pr [f̃(x)]− Ez∼p(z)[f̃(gθ(z))]

where f̃ lies in F = {f̃ : X → R , f̃ ∈ Cb(X ), ‖f̃‖L ≤ 1} and θ ∈ Rd.
Since X is compact, we know by the Kantorovich-Rubenstein duality [22] that

there is an f ∈ F that attains the value

W (Pr,Pθ) = sup
f̃∈F

V (f̃ , θ) = V (f, θ)

Let us define X∗(θ) = {f ∈ F : V (f, θ) = W (Pr,Pθ)}. By the above point we know
then that X∗(θ) is non-empty. We know that by a simple envelope theorem ([12],
Theorem 1) that

∇θW (Pr,Pθ) = ∇θV (f, θ)

for any f ∈ X∗(θ) when both terms are well-defined.
Let f ∈ X∗(θ), which we knows exists since X∗(θ) is non-empty for all θ. Then,

we get

∇θW (Pr,Pθ) = ∇θV (f, θ)

= ∇θ[Ex∼Pr [f(x)]− Ez∼p(z)[f(gθ(z))]

= −∇θEz∼p(z)[f(gθ(z))]

under the condition that the first and last terms are well-defined. The rest of the
proof will be dedicated to show that

−∇θEz∼p(z)[f(gθ(z))] = −Ez∼p(z)[∇θf(gθ(z))] (5)

when the right hand side is defined. For the reader who is not interested in such
technicalities, he or she can skip the rest of the proof.

Since f ∈ F , we know that it is 1-Lipschitz. Furthermore, gθ(z) is locally
Lipschitz as a function of (θ, z). Therefore, f(gθ(z)) is locally Lipschitz on (θ, z)
with constants L(θ, z) (the same ones as g). By Radamacher’s Theorem, f(gθ(z))
has to be differentiable almost everywhere for (θ, z) jointly. Rewriting this, the set
A = {(θ, z) : f ◦ g is not differentiable} has measure 0. By Fubini’s Theorem, this
implies that for almost every θ the section Aθ = {z : (θ, z) ∈ A} has measure 0.
Let’s now fix a θ0 such that the measure of Aθ0 is null (such as when the right
hand side of equation (5) is well defined). For this θ0 we have ∇θf(gθ(z))|θ0
is well-defined for almost any z, and since p(z) has a density, it is defined p(z)-a.e.
By assumption 1 we know that

Ez∼p(z)[‖∇θf(gθ(z))|θ0‖] ≤ Ez∼p(z)[L(θ0, z)] < +∞

so Ez∼p(z)[∇θf(gθ(z))|θ0 ] is well-defined for almost every θ0. Now, we can see

Ez∼p(z)[f(gθ(z))]− Ez∼p(z)[f(gθ0(z))]− 〈(θ − θ0),Ez∼p(z)[∇θf(gθ(z))|θ0 ]〉
‖θ − θ0‖

(6)
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= Ez∼p(z)
[
f(gθ(z))− f(gθ0(z))− 〈(θ − θ0),∇θf(gθ(z))|θ0〉

‖θ − θ0‖

]

By differentiability, the term inside the integral converges p(z)-a.e. to 0 as θ → θ0.
Furthermore,

‖f(gθ(z))− f(gθ0(z))− 〈(θ − θ0),∇θf(gθ(z))|θ0〉
‖θ − θ0‖

‖

≤ ‖θ − θ0‖L(θ0, z) + ‖θ − θ0‖‖∇θf(gθ(z))|θ0‖
‖θ − θ0‖

≤ 2L(θ0, z)

and since Ez∼p(z)[2L(θ0, z)] < +∞ by assumption 1, we get by dominated conver-
gence that Equation 6 converges to 0 as θ → θ0 so

∇θEz∼p(z)[f(gθ(z))] = Ez∼p(z)[∇θf(gθ(z))]

for almost every θ, and in particular when the right hand side is well defined. Note
that the mere existance of the left hand side (meaning the differentiability a.e. of
Ez∼p(z)[f(gθ(z))]) had to be proven, which we just did.
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D Energy-based GANs optimize total variation

In this appendix we show that under an optimal discriminator, energy-based GANs
(EBGANs) [25] optimize the total variation distance between the real and generated
distributions.

Energy-based GANs are trained in a similar fashion to GANs, only under a
different loss function. They have a discriminator D who tries to minimize

LD(D, gθ) = Ex∼Pr [D(x)] + Ez∼p(z)[[m−D(gθ(z))]
+]

for some m > 0 and [x]+ = max(0, x) and a generator network gθ that’s trained to
minimize

LG(D, gθ) = Ez∼p(z)[D(gθ(z))]− Ex∼Pr [D(x)]

Very importantly, D is constrained to be non-negative, since otherwise the trivial
solution for D would be to set everything to arbitrarily low values. The original
EBGAN paper used only Ez∼p(z)[D(gθ(z))] for the loss of the generator, but this is
obviously equivalent to our definition since the term Ex∼Pr [D(x)] does not depen-
dent on θ for a fixed discriminator (such as when backproping to the generator in
EBGAN training) and thus minimizing one or the other is equivalent.

We say that a measurable function D∗ : X → [0,+∞) is optimal for gθ (or Pθ) if
LD(D∗, gθ) ≤ LD(D, gθ) for all other measurable functions D. We show that such
a discriminator always exists for any two distributions Pr and Pθ, and that under
such a discriminator, LG(D∗, gθ) is proportional to δ(Pr,Pθ). As a simple corollary,
we get the fact that LG(D∗, gθ) attains its minimum value if and only if δ(Pr,Pθ)
is at its minimum value, which is 0, and Pr = Pθ (Theorems 1-2 of [25]).

Theorem 4. Let Pr be a the real data distribution over a compact space X . Let
gθ : Z → X be a measurable function (such as any neural network). Then, an
optimal discriminator D∗ exists for Pr and Pθ, and

LG(D∗, gθ) =
m

2
δ(Pr,Pθ)

Proof. First, we prove that there exists an optimal discriminator. Let D : X →
[0,+∞) be a measurable function, then D′(x) := min(D(x),m) is also a measurable
function, and LD(D′, gθ) ≤ LD(D, gθ). Therefore, a function D∗ : X → [0,+∞) is
optimal if and only if D∗′ is. Furthermore, it is optimal if and only if LD(D∗, gθ) ≤
LD(D, gθ) for all D : X → [0,m]. We are then interested to see if there’s an optimal
discriminator for the problem min0≤D(x)≤m LD(D, gθ).

Note now that if 0 ≤ D(x) ≤ m we have

LD(D, gθ) = Ex∼Pr [D(x)] + Ez∼p(z)[[m−D(gθ(z))]
+]

= Ex∼Pr [D(x)] + Ez∼p(z)[m−D(gθ(z))]

= m+ Ex∼Pr [D(x)]− Ez∼p(z)[D(gθ(z))]

= m+ Ex∼Pr [D(x)]− Ex∼Pθ [D(x)]
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Therefore, we know that

inf
0≤D(x)≤m

LD(D, gθ) = m+ inf
0≤D(x)≤m

Ex∼Pr [D(x)]− Ex∼Pθ [D(x)]

= m+ inf
−m2 ≤D(x)≤m2

Ex∼Pr [D(x)]− Ex∼Pθ [D(x)]

= m+
m

2
inf

−1≤f(x)≤1
Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

The interesting part is that

inf
−1≤f(x)≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] = −δ(Pr,Pθ) (7)

and there is an f∗ : X → [−1, 1] such that Ex∼Pr [f∗(x)]−Ex∼Pθ [f∗(x)] = −δ(Pr,Pθ).
This is a long known fact, found for example in [22], but we prove it later for
completeness. In that case, we define D∗(x) = m

2 f
∗(x) + m

2 . We then have 0 ≤
D(x) ≤ m and

LD(D∗, gθ) = m+ Ex∼Pr [D∗(x)]− Ex∼Pθ [D∗(x)]

= m+
m

2
Ex∼Pr [D∗(x)]− Ex∼Pθ [f∗(x)]

= m− m

2
δ(Pr,Pθ)

= inf
0≤D(x)≤m

LD(D, gθ)

This shows that D∗ is optimal and LD(D∗, gθ) = m− m
2 δ(Pr,Pθ). Furthermore,

LG(D∗, gθ) = Ez∼p(z)[D∗(gθ(z))]− Ex∼Pr [D∗(x)]

= −LD(D∗, gθ) +m

=
m

2
δ(Pr,Pg)

concluding the proof.
For completeness, we now show a proof for equation (7) and the existence of

said f∗ that attains the value of the infimum. Take µ = Pr − Pθ, which is a signed
measure, and (P,Q) its Hahn decomposition. Then, we can define f∗ := 1Q − 1P .
By construction, then

EEx∼Pr [f
∗(x)]− Ex∼Pθ [f∗(x)] =

∫
f∗ dµ = µ(Q)− µ(P )

= −(µ(P )− µ(Q)) = −‖µ‖TV
= −‖Pr − Pθ‖TV
= −δ(Pr,Pθ)
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Furthermore, if f is bounded between -1 and 1, we get

|Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]| = |
∫
f dPr −

∫
f dPθ|

= |
∫
f dµ|

≤
∫
|f |d|µ| ≤

∫
1 d|µ|

= |µ|(X ) = ‖µ‖TV = δ(Pr,Pθ)

Since δ is positive, we can conclude Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] ≥ −δ(Pr,Pθ).
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E Generator’s cost during normal GAN training

Figure 8: Cost of the generator during normal GAN training, for an MLP generator (upper
left) and a DCGAN generator (upper right). Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the cost of the
generator increases, pointing towards no significant correlation between sample quality and
loss. Bottom: MLP with both generator and discriminator. The curve goes up and down
regardless of sample quality. All training curves were passed through the same median filter
as in Figure 3.

F Sheets of samples
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Figure 9: WGAN algorithm: generator and critic are DCGANs.

Figure 10: Standard GAN procedure: generator and discriminator are DCGANs.
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Figure 11: WGAN algorithm: generator is a DCGAN without batchnorm and constant filter size. Critic is
a DCGAN.

Figure 12: Standard GAN procedure: generator is a DCGAN without batchnorm and constant filter size.
Discriminator is a DCGAN.
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Figure 13: WGAN algorithm: generator is an MLP with 4 hidden layers of 512 units, critic is a DCGAN.

Figure 14: Standard GAN procedure: generator is an MLP with 4 hidden layers of 512 units, discriminator
is a DCGAN.
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